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1 Introduction

Economists have long used linear approximations to ease the complexity of solving,

estimating and controlling non-linear models of the economy. First-order perturbation

methods have become popular since they admit the use of simple, robust tools for

analyses1, even though their ”local” nature of can forego accuracy in certain instances.

The perceived importance of this drawback is revealed in the advent of methods

that include higher-order terms2. While these models improved on the accuracy,

they inherently lose the convenience associated with the first-order approximation3.

This paper aims to fill the gap by providing a methodology, called the Koopman

Linearization, for first-order global approximations of non-linear stochastic models.

The ”first-order” aspect retains the convenience of linear approximations, while the

”global” aspect means that it better approximates non-linearities.

It is useful to think about the Koopman Linearization as a perturbation followed by

a projection. The perturbation is a first-order small-noise expansion of the model that

splits the non-linear stochastic dynamics into a deterministic part that is non-linear

in the functions of the states; and a stochastic part that is linear in the shocks. The

second part is based on the Koopman operator4 that linearly represents the non-linear

deterministic dynamics of functions of the states. Since it is infinite dimensional, a

projection is used to approximate the Koopman operator as a linear combination of

functions of an orthonormal basis. In this sense, the Koopman Linearization brings

together perturbation and projection in a unique way5.

1See Fernandez-Villaverde et al. (2007) and Aruoba et al. (2017) for such examples
2For example, Schmitt-Grohe and Uribe (2002) introduce second-order terms in the linearizations while Kim et al.

(2008), Andreasen et al. (2018) and others proposed refined versions of such approximations. Kim and Kim (2003) also
present an example that shows the clear need for higher-order approximations

3In response, Aruoba et al. (2017) suggest new vector auto-regression models that included higher order terms.
4See Koopmans (1947)
5Judd (1996) discusses the promise of combining projection and perturbation methods. Its value essentially boils

down to the observation that both methods are complementary in their strengths and weaknesses. See Section 11 in
Judd (1996) for details
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After describing the methodology, I provide convergence results of the Koopman

approximation and quantify the bias associated with the small-noise approximation.

Then, I demonstrate the Koopman Linearization by applying it to the well-known

consumption habits model of Campbell and Cochrane (1999) in Section 3. Due to the

kink of the parametrized surplus consumption function, the method prevails even

when standard first-order methods are not applicable. I show evidence of high accuracy

in terms of impulse responses and via simulation. Finally, I combine the Koopman

Linearization with the Kalman filter to estimate hidden states and structural parameters

via maximum likelihood.

2 The Koopman Linearization

Let xt be a n× 1 vector of state variables and yt be a m× 1 vector of observables. The

joint dynamics of (xt,yt) are given by the non-linear state-space model

xt+1 = T(xt,σεt+1) (1)

yt = F(xt) + ut (2)

where εt+1 ∈ Rl and ut ∈ Rm vectors of standard Gaussian shocks. To ensure

existence and uniqueness of a fixed point x∗, T : Rn×Rl → Rk is invertible and

Lipschitz continuous6. Finally, let F = [f1, f2, . . . , fm]⊤ be a vector of L2 functionals,

where f : Rn → R.7 Within the context of economic models, we assume that (1)-(2) is

the equilibrium dynamics of the model.

Fix a vector of L2 functions g = [g1, g2, . . . , gk]
⊤, where gi : Rn → R for i = 1, . . . , k.

6See Mezic (2022)
7f is an L2 function if it is square-integrable, i.e.

∫
X |f |2dµ with respect to measure µ exists
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Applying g to both sides of (1) and taking a first order expansion around σ = 0 yields

g(xt+1) = g(T(xt,0)) +Bg(xt)σεt+1 +O(||σ||2) (3)

where Bg(xt) = Jg(T(xt,0))T2(xt,0). The matrix Jg ∈ Rk×n denotes the Jacobian of

g, and T2 ∈ Rn×l denotes the derivative of T with respect to the second argument. The

first term in (3) is the deterministic (or zero-th order) part of (1), and the second term

approximates the impact of shocks. Thus, the expansion can be seen as a perturbation

around the deterministic model, as is commonly described in the economic literature8

That the expansion is not taken around x∗ is an attractive feature, since the approxi-

mation accuracy is of order ||σ ||2, not ||xt−x∗ ||2 as with other perturbation methods.

The other attractive feature is that the perturbation does not require differentiability

in the first argument of T. The approximate law of motion (3) is linear in εt+1 and

non-linear in xt. In the next section we use the Koopman operator to compute a linear

approximation of g(T(xt,0)).

2.1 The Koopman Operator

Let K : L2 → L2 be the composition operator that maps K : g 7→ g ◦T(·,0). Therefore

g(T(xt,0)) = K g(xt)

Then equation (3) can be rewritten accordingly as

g(xt+1) = K g(xt) +Bg(xt)σ εt+1+O(||σ ||2) (4)

By virtue of it being the composition operator, K is linear, making the law of

8See Bhandari et al. (2021) or Borovicka and Hansen (2014) for applications of the small-noise expansion in
economic settings. The important difference is that this method approximates the fully non-linear equilibrium solution
while other papers in the literature take a small-noise expansion and then solve the approximate model.
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motion of quasi-linear in g(xt). Since K acts on a function space, is therefore infinite

dimensional, which poses a practical problem for implementation. In section 2.4

below, I propose an accessible approach for approximating K with finite dimensional

matrices. Before that, I fix ideas with an example of the Koopman operator in a simple

deterministic setting.

2.2 Illustrative example

Define xt = [x1,t, x2,t]
⊤, and assume it follows deterministic dynamics

x1,t+1 = µx1,t (5)

x2,t+1 = λx2,t + ρx21,t

Choose judiciously g(xt) = [g1(xt), g2(xt), g3(xt)]
⊤ = [x1,t, x2,t, x

2
1,t]

⊤.

The dynamics of (5) can be rewritten in matrix form as


g1(xt+1)

g2(xt+1)

g3(xt+1)


︸ ︷︷ ︸

g(xt+1)

=


µ 0 0

0 λ ρ

0 0 µ2


︸ ︷︷ ︸

K


g1(xt)

g2(xt)

g3(xt)


︸ ︷︷ ︸

g(xt)

In this simple example, K specializes to a 3 × 3 matrix. Notice that there is no ap-

proximation error – by transforming the dynamics of xt into the space of g(xt), the

non-linear model of (5) has a linear representation. This is true only for the particular

chosen g, which is easy to choose for this simple problem. In the next section, I propose

a systematic choice of g that is useful in more general situations.
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2.3 Finite Dimensional K

The ability to approximate the Koopman operator with a finite dimensional matrix is a

key step in operationalizing the Koopman Linearization. An important concept to this

end is Koopman invariant subspaces.

Definition 1. Let G := span{g1, . . . , gN} be the subspace spanned by functionals

g1, . . . , gN ∈ L2(X ). G is Koopman invariant if for any γ ∈ G, K γ ∈ G.

Any set of basis functions that form a Koopman invariant subspace give rise to a

finite dimensional K. Reverting back to the example 2.2 reveals one instance of this.

Define the subspace G3 := span{g1, g2, g3}. Then

K g1(xt) = g1(xt+1) = µx1,t = µg1(xt) ∈ G3

K g2(xt) = g2(xt+1) = λx2,t + ρx21,t = λg2(xt) + ρg3(xt) ∈ G3

K g3(xt) = g3(xt+1) = µ2x21,t = µ2g3(xt) ∈ G3

and so G3 is clearly a Koopman invariant subspace. Indeed, K is a (finite-dimensional)

matrix.

Koopman eigenfunctions. Let {φi}∞i=1 be the set of (infinitely many) eigenfunctions

of K, with associated eigenvalues {λi}∞i=1. Brunton et al. (2015) shows that any finite

subset of eigenfunctions form a Koopman invariant subspace. Moreover, the zero-th

order (deterministic) dynamics of φi(xt) is linear with coefficient λi.

φi(T(xt,0)) = Kφi(xt) = λiφi(xt) for all i = 1, . . . (6)

Suppose we choose N eigenfunctions and stack them to form φ = [φ1, . . . , φN ]⊤.
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The dynamics of φ(xt) is

φ(T(xt,0)) = Λφ(xt) (7)

where Λ = diag(λ1, . . . , λN ). Clearly the finite-dimensional Koopman operator associ-

ated with φ is Λ.

2.4 Approximate Koopman operators

The previous subsection shows that K associated with any subset of its eigenfunctions

is finite dimensional. The question then becomes: how do we find these eigenfunctions?

One common method is to approximate K via projection. Williams et al. (2015) refers

to this as the Extended Dynamic Mode Decomposition method9

Let the n × 1 vector xi be a point in the discretized state-space X , and create the

n×M matrices

X = [x1, . . . ,xM ], X′ = [T(x1,0), . . . ,T(xM ,0)] (8)

Let {gi}∞i=1 form an orthonormal basis of L2, for example the set of Chebyshev

polynomials10. Choose a subset of N < M functionals and stack them to form the

M × 1 vector g = [g1, . . . , gN ]⊤. Then, create the N ×M data matrices

g(X) =


g1(x1) . . . g1(xM )

... . . .
...

gN (x1) . . . gN (xM )

 , g(X′) =


g1(T(x1,0)) . . . g1(T(xM ),0)

... . . .
...

gN (T(x1,0)) . . . gN (T(xM ,0))


9Under the assumptions below, the Williams et al. (2015) show below that the EDMD method to the numerical

approximation obtained from a Galerkin method.
10Christensen (2017) uses a sieve estimator to approximate the Perron-Frobenius eigenfunctions from data in a

similar vein, and estabilishes consistency and convergence rates. The Perron-Frobenius operator is the left-adjoint of
the Koopman operator.
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Approximate Koopman operator K̂, is the solution to

K̂ = arg min
K∈RN×N

∥g(X′)−K g(X)∥2F =⇒ K̂ = g(X′)g(X)†

where ∥·∥F is the Frobenius norm and (·)† is the generalized inverse.11

Then approximate Koopman eigenfunctions are given by φ̂i = ϕ̂i g for i = 1, . . . , N

where ϕ̂i is the ith left eigenvector of K̂ with associated eigenvalue λ̂i. Brunton et al.

(2015) also show that φ̂i(xt) has linear (deterministic) dynamics with coefficient λi,

since

φ̂i(T(xt,0)) = ϕ̂i g(T(xt,0)) = ϕ̂iK g(xt) = λiϕ̂g(xt) = λiφ̂i(xt) (9)

where the second equality is the definition of K and the third equality uses the

definition of a left eigenvector.

Just as with (7), stacking the eigenfunctions φ̂(xt) := [ϕ̂1, . . . , ϕ̂N ]g(xt) and Λ̂ :=

diag(λ̂1, . . . , λ̂N ) yields the linear (deterministic) dynamics

φ̂(T(xt,0)) = Λ̂φ̂(xt)

2.5 Measurement equation

In finding a linear approximation to the dynamics of state transition equation (1),

the state variables have been transformed from xt to φ̂(xt). To then find a linear

approximation to the measurement equation, compute a matrix H that solves

arg min
H∈Rm×N

||F(X)−Hφ̂(X)||2F (10)

11Since N < M , K̂ is well-defined and equivalent to the standard formula for least-squares regression.
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The approximation measurement equation is therefore

yt = H φ̂(xt) + ut (11)

and the system In the next section, I provide pseudo-code to implement the Koop-

man Linearization of non-linear state-space model (1)-(2).

2.6 Pseudo-code for Koopman Linearization

1. Choose order of Chebyshev polynomial, N

g(s) = [g0(s), . . . , gN (s)]⊤ (12)

where gi(s) is chebyshev polynomial of order i

2. Create matrices X and x′ of discretized state-space X as in (8)

3. Calculate K̂ via projection

K̂ = g(X′)g(X)† (13)

4. Compute N eigenvector-value pairs of K̂, {ϕ̂i, λ̂i}Ni=0 and approximate eigenfunc-

tions and eigenvalues

φ̂(s) = [ϕ̂0, . . . , ϕ̂N ]g(s)

Λ = diag(λ̂0, . . . , λ̂N )

5. Calculate conditional covariance function, B̂φ(x) = ∇φ̂(x)T2(x, 0)
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6. Calculate measurement approximation via projection

H = F(X)φ̂(X)† (14)

7. The Koopman Linearized (KL) model is

φ̂(xt+1) ≈ Λ̂φ̂(xt) + B̂φ(xt) εt+1 (15)

yt ≈ H φ̂(xt) + ut (16)

2.7 Approximation error

There are three sources of approximation error for the Koopman Linearization: The

Koopman operator approximation, the measurement equation approximation, the

perturbation approximation.

For the Koopman operator approximation error, I borrow results from Korda and

Mezic (2017) who show that under regularity conditions that our framework satisfies

K̂ converges to K in the strong operator topology as the order of the chebyshev polyno-

mials becomes large (N → ∞) and the number of discretization points becomes large

(M → ∞).12,13. The authors also show under the same assumptions that the eigenpairs

of K̂ (λ̂i, φ̂i) weakly converge to the eigenpairs of K (λi, φi for i = 1, . . . , N )14.

The measurement equation approximation error is F(xt) − Hφ(xt). Since =

12A sequence of bounded operators KN : L2 → L2 defined on a Hilbert space L2 convergences strongly (or in the
strong operator topology) to an operator K : L2 → L2 if

lim
M,N→∞

||KN gK g|| ∀g ∈ L2 (17)

13The assumptions required for convergence are that 1) K is bounded and 2) g1, . . . , gN are selected from an
orthonormal basis of L2. See Korda and Mezic (2017) for further details

14A sequence of elements fN ∈ L2 of a Hilbert space L2 converges weakly to f ∈ L2 if

lim
N→∞

⟨fN , g⟩ = ⟨f, g⟩ (18)
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[f1, . . . , fm]⊤ is a vector of L2 functionals and φ is the linear combination of chebyshev

polynomials g1, . . . , gN are a subset of an orthonormal basis for L2, as the order of the

chebyshev polynomials (N ) and the number of discretization points become large (M ),

lim
M,N→∞

|fi(xt)−H
(i,·)
N φN (xt)| = 0 i = 1, . . . ,m (19)

for the i-th row H(i,·) of the matrix HN , and where we make explicit the dependence

on N for clarity.

The perturbation approximation error is shown in (4). This is the only error does

not vanish for an increasing N or M and is the root of any asymptotic bias in the

approximation. The error is of order ||σ||2, and only vanishes if σ = 0. For small values

of σ, the approximation error is therefore small, which is the usual assumption in the

small-noise expansion literature.

3 Asset pricing with external habits

We apply the Koopman Linearization methodology to the model of external habits of

Campbell and Cochrane (1999). A representative agent maximises

E0

[ ∞∑
t=0

βt (Ct −Xt)
1−γ

1− γ

]

with coefficient of risk aversion γ, level of habit Xt and subjective discount factor β. A

convenient object is the surplus consumption ratio St =
Ct−Xt

Ct
. Following the literature,

I assume log consumption growth is an i.i.d process with mean µc, and parameterize

the log surplus consumption ratio as

st+1 = (1− ϕ)s̄+ ϕst + λ(st)ϵt+1 (20)
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where ϵt+1 = ∆ct+1 − µc, and define λ(st) below.

The intertemporal marginal rate of substitution for the agent is

mt+1 = log(β)− γ[µc − (1− ϕ)(st − s̄) + (1 + λ(st))ϵt+1]

I assume that the risk-free rate is observed with noise, so the measurement equation is

rft = rf∗t + σuut

= −Et[mt+1] +
1

2
σ2
m,t + σuut

= − log β + γµc − γ(1− ϕ)(st − s̄)− 1

2
γ2[1 + λ(st)]

2σ2
c + σuut (21)

To engineer key features in the model consistent with the empirical literature, I

follow Wachter (2005) and define λ(st)

λ(st) =


1
S̄

√
1− 2(st − s̄)− 1, if s ≤ s̄

0, otherwise

S̄ = es̄ = σc

√
γ

1− ϕ− b/γ

The non-linear aspect of λ is significant. First, λ(st) is kinked at s̄ making a simple

log-linear approximation unsuitable. Furthermore λ(st) is non-linear even when s < s̄.

Put together equations (20)-(21) define the non-linear state-space model.

I follow Wachter (2005) in parameterizing the model, setting µc =
2.2
400 , σc =

0.86
200 , γ =

2.0, b = 0.011, ϕ = 0.89
1
4 , β = 0.93

1
4 . Finally, I set standard deviation of the measure-

ment error to σu = 0.001.

To demonstrate the Koopman Linearization, I implement the pseudo-code in section

2.6, setting N = 5. Figure 1 plots impulse responses of st and rft to a one standard

deviation increase in εt+1 for both the true model and the approximate model. Since

12



Figure 1: Non-linear impulse response approximation

the model is non-linear, I calculate the impulse response at different initial values

between ±10% of s̄. The figure suggests high accuracy in approximation in response to

a moderately sized-shock at many different initial values.

I further test the accuracy of the approximation using the accuracy metric of

Den Haan (2010). I simulate J paths of shocks {εjt+1}Tt=0 and feed the shocks into

both the true model and the KL model. For path j and time t, define the approximation

error of the log surplus consumption ratio

Ej
t (s) = sjt − ŝjt

where ŝjt denotes the approximate state from the KL model. The approximation

error for the rft is defined analogously. Table 1 reports the mean, standard deviation

and maximum-absolute error for J = 500 and T = 1000, suggesting a high degree of

accuracy for the KL approximation.
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Object Mean Standard deviation Max-absolute error
Ej
t (s) −6.1e−5 5e−4 1e−1

Ej
t (f) −9.9e−7 7.5e−5 2.6e−4

Table 1: Accuracy metrics for simulated data

3.1 Estimation

A powerful feature of the KL is that it opens the door to using existing linear techniques

on highly non-linear systems. Two immediate applications are hidden-state estimation

and likelihood-based parameter estimation via the Kalman filter.

One way to implement this is by replacing the Koopman Linearized system in (15) -

(16) with

φ̂(xt+1) ≈ Λ̂φ̂(xt) + B̂(x∗) εt+1 (22)

yt ≈ H φ̂(xt) + ut (23)

where we have replaced B̂(xt) with its steady-state analogue B̂(x∗). This approxi-

mation is crucial in mapping the approximate model into the state-space form required

with the Kalman filter.15 The downside to this approximation is that it introduces an

additional approximation error of size (B̂(xt)− B̂(x∗)) εt+1.

We simulate a time-series (T = 1000) of log surplus consumption ratio and risk-free

rate. We assume that only the risk-free rate is observed and filter the hidden states

from the Koopman Linearized state-space system (22) using the Kalman filter. Figure 2

plots the time-series of the simulated states in blue, the KL mean estimate of the states

using the Kalman filter in red, and the mean estimate of the filtered states using the

adaptive particle filter of Herbst and Schorfheide (2016) with 1000 particles. The figure

15Without this approximation, equation (15) has a stochastic covariance term that depends on φ̂(xt). Existing
filters, such as the ensemble filter (see Evensen (1994) and Houtekamer (1998)) are flexible enough to capture these
kinds of properties of a state-space model.
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Figure 2: Simulated path of states Figure 3: Distribution of filtering errors

shows that the KL states that those estimated by the particle filter are very close. In

some instances, the Koopman states are more volatile than either the true of PF states.

Studying the differences systematically, I compute J of these paths. Then for each

path j, I calculate errors of the estimated-states for both the KL and the particle filter.

Recycling notation, define

EKL
j,t = sj,t − ŝKL

j,t

EPF
j,t = sjt − ŝPF

j,t

Figure 3 plots the distribution of EKL
j,t and EPF

j,t from our simulated paths. The

error distributions appear to be similar. The KL errors have mean 0.001 with standard

deviation 0.073 and the PF errors have mean −0.003 and standard deviation 0.070. The

KL is much more computationally efficient, however: the filtering for J = 1000 and

T = 1000 took the particle filter 23 minutes, and it took the KL filter 13 minutes, a 76%

improvement16.

Next we study the distribution of the maximum likelihood estimate associated

with the KL. The literature has historically resorted to either calibration or method

16The monte carlo exercise was executed on an Apple M1 Pro with 16GB memory, 8 performance cores and 2
efficient cores
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of moments techniques to estimate Campbell and Cochrane (1999). For example,

Tallarini and Zhang (2005) who use the efficient methods of moments strategy of

Gallant and Tauchen (1996), while Chang et al. (2005) and Engsted and Moller (2010)

follow generalized method of moments procedures to estimate parameters. I instead

estimate Koopman Linearized model via maximum likelihood17.

As before, we generate J = 1000 paths of length T = 1000, and calculate the

maximum likelihood estimates for each parameter, µc, σc, γ, b, ϕ, β. Figure 4 plots the

histograms associated with finite-sample distribution for each MLE parameter, and the

red dotted line denotes the true parameter value generating the simulated data. Table

2 shows the mean of the estimated parameters across the monte carlo samples. For the

majority of the parameters, the mean estimate of the parameters is close to the true

value. The only real outlier is σc, where the mean estimate is significantly larger from

the true parameter.

µc σc γ b ϕ β

True value 0.0055 0.0043 2.0 0.011 0.971 0.982
Sample mean of MC draws 0.0055 0.0077 1.97 0.011 0.971 0.982

Table 2: Mean parameter estimate from 1000 MC paths

17This approach can be viewed similar in spirit to Gallant and Tauchen (1996) by consider the the KL model as an
auxiliary model
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Figure 4: MLE sampling distribution (J = 1000)
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4 Concluding remarks

This paper presents a methodology for globally approximating non-linear equilibrium

models that retains the convenience associated with a linear framework. The algorithm

combines projection and perturbation methods and extends Koopman Operator theory

to the stochastic case. I characterize the approximation quality and provide results

on convergence, drawing on existing literature. Then, I demonstrate the methods

capabilities on a model of external habits for which standard linear approximations

are unsuitable, by applying it to the problem of filtering and structural parameter

estimation.
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ANDREASEN, M. M., J. FERNÁNDEZ-VILLAVERDE, AND J. F. RUBIO-RAMÍREZ (2018):
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