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Abstract
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aggregate uncertainty, we show that including micro-data delivers increased precision of
parameter estimates than conventional approaches. We apply our method to estimate a
medium-scale HANK model with heterogeneous exposures to aggregate fluctuations at
the household-level. Our estimates imply that poorer households are more sensitive
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estimates that heterogeneous earnings exposures amplify the aggregate consumption
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1 Introduction

Dynamic general equilibrium models featuring rich heterogeneity have become a widely-used

branch of macroeconomics in recent years. These models have gained traction because they shed

light on how heterogeneity at the micro level can have macro consequences. To incorporate micro

data in the estimation of these models, the literature has typically focused on using only a limited

set of moments1, thereby discarding valuable information. This is presumably because computing

the likelihood of a dataset with thousands of individuals observed over decades renders most

existing methodologies infeasible.

In this paper, we develop a tractable econometric framework that approximates the joint

likelihood of macro and repeated cross-sections of micro data. The outcome is a rapid algorithm

that estimates the structural parameters of a dynamic heterogeneous-agent equilibrium model.

Our key assumption is that the model has a Gaussian linear state-space representation, where

the number of states are small relative to the number of observables (N ). We provide numerical

evidence for workhorse models, suggesting that they do indeed exhibit this low-rank structure2,

while the Gaussian linear state-space representation is natural for many benchmark models.3

Our main theoretical result is that such a model is well-approximated by a reduced-rank first-

order vector autoregression.4 The logic of the theorem is as follows. In more general settings,

Kalman filtering theory dictates that the best predictor of the hidden states (in a least-squares

sense) conditions on the infinite history of data. Thus, the state-space model has a reduced-rank

VAR(∞) representation, where the rank is equal to the number of states. In our setting, as N grows

large, the expectation of the hidden states conditional on the infinite history of data coincides

with that conditional on the present data only. In other words, the data at time t is sufficient

to precisely estimate the hidden states, effectively substituting for its infinite history. Thus, the

VAR(∞) representation converges to a VAR(1), which we show occurs at rate N . Our result is

useful because computing the reduced-rank first-order vector autoregression is fast and scales well

with N . Moreover, our theory shows that the method excels exactly in situations in which most

existing methods perform poorly.5

1Examples include the cross-sectional variance of consumption or the frequency of price adjustments. See Bayer et al. (2024),
Mongey and Williams (2017) and Morales-Jimenez and Stevens (2024) for examples.

2We also confirm that this feature is present in the consumption micro data from the Consumer Expenditure Survey. This is
important as it suggests low-rankness is a realistic feature of the data that should be present in structural models.

3Of course, this assumption rules out non-linear models (Kase et al. (2022), and aggregate shocks with fat tailed distributions.
4Sargent and Selvakumar (2024) assert and use the result to infer hidden factors of the cross-section of income and consumption in

the Consumer Expenditure Survey. The present paper provides a formal proof and uses the result in a structural estimaton setting.
5The total speed of the estimation will still depend on whether the researcher is able to, given a vector of parameters, solve the
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To operationalize our theory, we must take two important steps. The first step is to compute the

reduced-rank VAR(1), conditional on a vector of structural parameters. We propose two approaches

depending on whether second-moments of the observables are available analytically. If so, the

reduced-rank VAR(1) can be computed quickly and accurately using the canonical correlations

approach of Anderson and Rubin (1949). This will be the case for our applications below. If not, it

can be computed by simulating a long sequence of the observables from the model and computing

a Dynamic Mode Decomposition (Brunton et al. (2015)) of the simulated data.

The second step is to organize the micro data in a model-consistent way. To make matters

concrete, imagine our data consists of repeated cross-sections of consumption6. In the recursive

representation of the household problem, households are distinguished only by the value of

their idiosyncratic states. Every period, we group individuals into bins according to their states7

and define consumption for each bin as the mean consumption of all the individuals in that bin.

Repeating this every period constructs our micro dataset for consumption.

What do we gain by using repeated cross-sections of micro data instead of only simple moments?

We study this in the context of a Bewley-Huggett-Aiyagari model with a TFP shock and a tax shock

that redistributes income across households. In a Monte-Carlo simulation exercise, we simulate

macro and micro consumption data from this economy and estimate the structural parameters,

attempting to recover those that generate the data. We find that estimating the model with both

macro and micro data leads to a sharp increase in the precision of the parameter estimates compared

to a benchmark that uses macro data and the time-series of the variance of the consumption

distribution. In particular, our method delivers an order of magnitude increase in precision8 for

parameters of the tax shock process, and leaves that of the TFP shock process unchanged. We refer

readers to Figure 3 .

Our empirical application studies the amplification of monetary policy shocks arising from

heterogeneous earnings exposures, namely the differential elasticity of households’ incomes to aggre-

gate shocks. The environment is a benchmark medium-scale heterogeneous-agent New Keynesian

model similar to Bayer et al. (2024) in which prices are sticky, and wages and hours are set by a

labor union subject to adjustment costs. Monetary policy is set according to a persistent Taylor rule

for inflation.

model rapidly. Our algorithm ensures that the bottleneck remains at the solution step, rather than the likelihood computation step.
6The same principles can be applied to micro data on firms or other agents.
7Grouping individuals in this way means the same individual may change bins over time. Moreover, the structural model dictates

the grouping criteria.
8By ”precision”, we mean the inverse of the standard deviation of maximum likelihood estimates across the monte-carlo samples.
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Household earnings, yt(z) = wthte
vtΓt(z), depend on idiosyncratic productivity z, aggregate

hours ht, wages wt and monetary policy shocks vt through an incidence function Γt(z), which

determines heterogeneous income elasticities.9 The incidence function has a flexible parametric

form which we estimate. The direct dependence on monetary policy shocks is motivated in part

by the literature of uneven sectoral exposures to interest rate fluctuations. It also exemplifies the

appeal of our method that enables joint estimation of the structural parameters using detailed

micro and macro data.

We estimate the model using two datasets: one with macro data only – aggregate output,

consumption, investment, inflation, wages and nominal interest rate between 1959 and 2020 –

which we call Macro; and one with the preceding macro data and repeated cross-sections of

consumption and income from the Consumer Expenditure Survey – between 1990 and 2020 –

which we call Macro+Micro. Clearly, including micro data severely limits the time-dimension of

our data. Were a researcher to only include cross-section moments in the computation, they would

have to forego nearly 40 years of data to include a few moments of the cross-section. This further

highlights the benefits of using high-dimensional micro data, since the researcher can use much

more data per period, perhaps improving the trade off. For this reason, in the empirical section,

we compare Macro with Macro+Micro, ignoring an estimation with simple micro moments.

Comparing the parameter estimates, a few differences stand out.

1. Macro+Micro implies a ”U”-shaped incidence function: low and high income households

exhibit similar elasticities to aggregate income. This sensitivity is further exacerbated con-

ditional on a monetary policy shock for low income households. On the contrary, Macro

implies that low income households are less sensitive to changes in aggregate income and that

high income households are more exposed to monetary policy shocks, though the parameters

are not as precisely estimated.

2. Macro+Micro has a significantly higher slope of the wage Phillips curve than Macro.

3. Macro+Micro has a lower slope of the price Phillips curve and a more persistent Taylor rule

than Macro.

4. Macro+Micro has larger standard deviations of the structural shocks compared to Macro

The reason for these differences can be understood by comparing the volatility of income at

9We follow in the steps of Alves et al. (2020), Werning (2015) and Auclert and Rognlie (2018)
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the micro level. Income volatility in the data exhibits a ”U”-shape with low and high productivity

households experiencing similar levels. Micro+Macro is able to match both the shape and level

of volatility in the data but Macro portrays a counterfactually increasing shape and significantly

lower volatility for all productivity levels. We refer readers to Figure 7.

This comparison rationalizes the parameter differences noted above: the Macro+Micro param-

eters all serve to generate higher levels of volatility at the micro level. The large estimated standard

deviations of shocks increase the volatility of aggregate income and thus individual income through

the labor incidence function. This is further amplified by the steep wage Phillips curve, which

makes wages more sensitive to changes in aggregate hours, all else equal. Furthermore, the

low Phillips curve slope coupled with the highly persistent Taylor rule implies that monetary

policy does not act as a dampening force in the economy on impact of the shocks. Moreover,

Macro+Micro matches the ”U”-shape in the data by estimating a ”U”-shaped incidence function.

These features come at a cost. In comparing the volatility for aggregate variables, we find that

Macro+Micro overstates the aggregate volatility compared to the data. This is in direct contrast

to Macro that matches the macro data well along this dimension. The dichotomy borne from this

empirical exercise sheds light on an important dimension of misspecification in benchmark HANK

models, in that they are unable to generate the appropriate level of volatility at the micro and macro

level simultaneously.

Given these directly contrasting models, it appears important to compare them in the spirit of an

external validation exercise. We estimate a structural vector autoregression (SVAR) and instrument

monetary policy shocks with those identified by Bauer and Swanson (2023). We compare the Macro

and Macro+Micro impulses responses of output and inflation to a 25bps monetary policy shock

to those from the SVAR. We find that Macro+Micro impulse responses are unsurprisingly larger

in magnitude and closer to the SVAR than Macro.

Turning to our counterfactural analysis, we study the effect of heterogeneous earning exposures

on the amplification of consumption to a 25bps monetary policy shock. The exercise is to compare

the impulse responses in Macro and Macro+Micro to counterfactual impulses responses from

models without heterogeneous earnings exposures. For Macro+Micro, this channel leads to a

40% amplification in consumption, which is substantially larger than estimates in the existing

literature. The reason is that in Macro+Micro, low-income households are highly sensitive to

changes in aggregate labor income. Since they are also high-MPC (marginal propensity to consume)
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households, they react strongly to large changes in their income, amplifying the shock further.10 In

Macro, amplification is much lower – around 10% – owing to the small sensitivity of low-income

households to aggregate income.

The rest of the paper is organized as follows. Section 2 situates our contributions within the

context of related work. Section 3 outlines the econometric framework and lays out the theoretical

foundations. Section 4 pursues a Monte-Carlo simulation exercise within the context of a Bewley-

Huggett-Aiyagari model with aggregate shocks. Section 5 estimates a medium-scale HANK model

to analyze the effect of earnings heterogeneity on consumption amplification to a monetary policy

shock. Section 6 concludes.

10This covariance between incidence and MPCs is the main focus of papers such as Patterson (2023). See references therein for other
examples.
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2 Related Literature

Our paper contributes to the recent literature on structural estimation of heterogeneous-agent

models using both macro and micro data. The paper closest to us is Liu and Plagborg-Møller

(2023) who compute a numerically unbiased estimate of the likelihood. Crucial to their framework

is a decomposition of the likelihood into a macro part and a micro part, conditional on the macro

state variables, which are treated as unobserved. Thus, the macro data play an important role in

determining the aggregate states. Our approach does not require such dependence, but rather

infers the states jointly from both macro and micro data. Thus, our approach is still viable were

macro data not to be used. Moreover, their approach is better suited to a state-space representation

of the model obtained from the Reiter (2009) model solution approach. Our approach is flexible

enough such that its convenience is not bound to any particular solution method.

Fernández-Villaverde et al. (2023) suggest a promising avenue for using micro data in estimating

a model with financial frictions. However, they assume that the underlying states are observed,

while our approach infers them from the macro and micro data jointly. Chang et al. (2021) compute

functional vector autoregressions where the microdata are the density of the cross-section. They

estimate the feedback loop betwen aggregate time series and micro-data, but do so without the

context of fully-specified equilibrium model.

Kase et al. (2022) use neural networks to solve and estimate a non-linear HANK model with

the zero-lower bound. They compute the likelihood via the particle filter and focus mainly on

aggregate data; and speed up the likelihood computation by effectively treating the parameters

as additional inputs into the neural network. In their empirical application, they estimate the

model using only macro data and choose to ”incorporate information contained in the cross-section

through the prior”. Unlike them, we estimate linearized versions of HANK models and put a lot of

emphasis in computing the joint likelihood of macro and micro data.

Traditional estimation methods are not well-suited to scale with the size of the micro data.

One approach is Auclert et al. (2021a), who compute the likelihood by exploiting the solution’s

implied moving average representation. This requires vectorizing the N × T data matrix, where

the corresponding covariance matrix is NT ×NT . In conventional situations with only aggregate

data, N is relatively small (typically less than ten), so the covariance matrix is computationally

manageable. In using individual-level micro data, N will undoubtedley be large making the
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inversion of the NT × NT covariance matrix prohibitively slow.11 Our paper fills the gap by

providing a solution in setting in which the conventional approach becomes infeasible.

Another approach is to use the Whittle likelihood approximation in frequency domain, as in

Hansen and Sargent (1981), Christiano and Vigfusson (2003) and Plagborg-Møller (2019). While

estimation is feasible for large N , the quality of the approximation relies on large T , which can

prove difficult for existing micro-datasets. In contrast, our method relies on large N , which seems

to us a far easier requirement to satisfy.

In Appendix C, we describe the above methods and compares the computational efficiency in

computing the likelihood, in the context of the Bewley-Huggett-Aiyagari model in Section 4. The

results describe how the traditional method is prohibitively slow when N is large. Furthermore

while the Whittle likelihood method is feasible, our estimator has more attractive finite-sample

properties.

Many papers have estimated structural models using solely macro data, including Winberry

(2018), Auclert and Rognlie (2018), Bayer and Luetticke (2020); others have also done so with

some moments of the micro-data, including Acharya et al. (2020), Mongey and Williams (2017)

and Challe et al. (2017). We employ our method to estimate a benchmark HANK model using

individual-level consumption and income from the Consumer Expenditure Survey, as well as the

conventional aggregate time-series. We are not aware of other papers that pursue this empirical

analysis.12

3 Econometric framework

Let Mθ0({yt}) for some θ0 ∈ Θ be a linearized fully-specified dynamic general equilibrium model

that governs the sequence of observables yt ∈ RN×1. Similar to the vast literature on estimation

of representative-agent models, it has become standard to consider yt as a vector of aggregate

observables, e.g. GDP, consumption, inflation, and so on. Our goal is to extend this list of

observables to include individual-level micro data. To sidestep difficulties of computing the

likelihood arising from large N , we propose an econometric framework that well-approximates

Mθ0(yt) in such situations.

11In our two examples below, N = 86 and N = 300; and T = 120, for 30 years of quarterly data.
12Liu and Plagborg-Møller (2023) show the benefits of including micro data only on simulated data.
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3.1 Data organizing principle

A key ingredient in our methodology is the organization of the micro data. Through the lens of the

model, individuals differ only in their values of the idiosyncratic state vector, z ∈ Z with cardinality

N .13 To make matters concrete, Aiyagari (1994) distinguish individuals through their asset holdings

and productivity levels; Winberry (2021) distinguish firms through their productivity, capital, stock

of depreciation allowances and their current draw of fixed costs. Thus, each period, we organize

the micro data by placing individuals into one of N bins, according to their states variables. In our

baseline theory, we will assume that the econometrician observes the individuals’ idiosyncratic

state vector. We extend the analysis to consider settings in which some of the idiosyncratic

states are unobserved in Appendix F.1. Define yt(z) the consumption at time t of an individual

with idiosyncratic state vector z and the vector yt = [yt(z1), . . . , yt(zN )]
⊤ ∈ RN×1 represents the

observables at time t of individuals. Importantly, since our notion of an individual is bound by the

states, individuals can and will move across rows of yt over time.

3.2 State-space representation

We begin our theoretical argument by stating our main assumption.

Assumption 1. Mθ0(yt) has a Gaussian linear state-space representation, and the number of observables

(N ) are much larger than the number of states (r)

f t+1 = Af t+Cwt+1 (1)

yt = Gf t+vt,

for states f t ∈ Rr×1, and observables yt ∈ RN×1; where shocks wt+1 ∼ N (0, Ir×r), measurement errors

vt ∼ N (0,R) and ws ⊥ vτ for all s, τ ; here A ∈ Rr×r, C ∈ Rr×r and G ∈ RN×r and R ∈ RN×N .

That Mθ0(yt) has a state-space representation is not controversial, it in fact forms the basis for

many state-of-the-art solution methods.14 The key difference is that the number of states are small

relative to the size of the observable vector. At first glance, this might appear restrictive, since an

equilibrium dynamic heterogeneous-agent model with aggregate uncertainty typically involves

13We assume that any continuous idiosyncratic states, e.g. productivity, have been discretized appropriately, for example via the
Rouwenhorst (1995) or Tauchen (1986) method.

14Examples include Winberry (2018), Bayer et al. (2024), Auclert et al. (2021b)
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forward looking agents that forecast prices, which depend on the distribution of households. The

exact solution therefore requires its inclusion into the state vector, making it infinite-dimensional.

Krusell and Smith (1998) show that in their model, replacing the asset distribution with its first

moment results in a ”good” approximation for equilibrium of their model. Our assumption is in

a similar spirit, though we do not require the state to be moments of the distribution. Moreover,

the larger is N , the larger the admissible number of states. In Appendix E.1, we show that the

workhorse heterogeneous-agent models with aggregate shocks used in the literature today satisfy

this assumption.

This assumption is also easily testable. A simple heuristic test is to simulate a long sequence

{yt} and compute its principle components, since Assumption 1 implies that the elements of yt

loads on a small number of principle components. We discuss other tests within the context of our

applications in Sections 4.3 and 5. We place the following additional restrictions on the Gaussian

linear state-space model (1).

Assumption 2. Gaussian linear state-space system (1) also satisfies the following restrictions

1. G,A has full column rank (i.e. rank(G) = rank(A) = r)

2.
∥∥G⊤G

∥∥ = O(N), where ∥·∥ denotes the Frobenius norm

3. ∥R∥ = o(N)

The first condition requires that the columns of G and A are linearly independent. To gain

some intuition, consider an economic model for which the rows of yt are the consumption of

different households. Columns of G then represent the response of households’ consumption to

each factor. Condition 2 then implies that the consumption responses to each factor are sufficiently

different across households. A representative agent model would violate this assumption, for

example. This condition highlights our identification strategy that both requires and exploits the

rich heterogeneity in the micro-data. The assumption on A means that there is no redundant state,

and allows for higher-order lags for the states.

The second condition concerns the asymptotic property of the model when the number of

observables grows and is standard in the factor analysis literature (e.g. Chamberlain and Rothschild

1982, Stock and Watson 2002, Bai and Ng 2006). To continue the example of household consumption,

2. implies that the cross-sectional variance of consumption is finite. The third condition requires

that the variances do not grow too fast (not faster then N ). As will become important in our
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empirical section, this assumption is weak enough to allow for heteroskedasticity and correlated

measurement errors.

The starting point for our theoretical analysis is the vector auto-regression representation of

system (1).

Proposition 1. There exists an infinite-order VAR representation of DFM (1) in yt, given by

yt =
∞∑
j=1

B∞
j yt−j +at (2)

E[at y⊤
t−j ] = 0 for all j ≥ 1

E[at aTt ] =: Ω

B∞
j = G(A−KG)j−1K ∀j ≥ 1 (3)

rank(B∞
j ) = r ∀j ≥ 1

where K = AΣ∞G⊤Ω−1 and Σ∞ = CC⊤+KRK⊤+(A−KG)Σ∞(A−KG)⊤

Proposition 1 states the population formula for computing the the expectations of yt+1, given

the information contained in its infinite history. Since B∞
j ̸= 0 ∀j ≥ 1, it implies that a truncation

induces a non-trivial loss in prediction accuracy. Our theoretical analysis studies what happens to

this prediction accuracy as N → ∞.

Lemma 1. Under Assumption 2, as the number of observables grows (N → ∞), the matrix A−KG → 0.

Corollary 1. When A−KG = 0, E[ft|yt] = Lyt and E[yt+1 |yt] = GKyt where L = Σ∞G⊤Ω−1.

Lemma 1 and Corollary 1 taken together show that as N → ∞, the estimate of f t conditional

only the contemporaneous data yt and that conditional on the full history of data yt converge:

when A−KG = 0, E[f t |yt] = E[f t |yt]. Furthermore, the Markovian property of the system

implies that next period’s forecasts computed conditional on yt and yt also converge.

Theorem 1. Suppose Assumption 2 holds. Then as N → ∞,

1. B∞
j → 0 ∀j ≥ 2. Furthermore, lim sup(N j−1

∥∥B∞
j

∥∥) <∞ ∀j ≥ 2
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2. The infinite-order VAR representation of (1) collapses to a first-order VAR representation where

yt = B∞
1 yt−1+at (4)

E[at y⊤
t−1] = 0

E[at aTt ] =: Ω

B∞
1 = GK ∀j ≥ 1

rank(B∞
1 ) = r

Theorem 1 states that as N increases, all the auto-regressive coefficient matrices in the VAR(∞)

representation other than the first lag converge to the zero matrix. Thus, the rank-r VAR(1) coincides

with the VAR(∞) representation.

Theorem 2. Let Pρ(yt) be the reduced-rank vector auto-regression (4) where ρ ∈ P is the population

maximum likelihood estimator. Suppose Assumption 1 and 2 holds. As N → ∞, Pρ(yt) approximates

Mθ0(yt) in the sense that the Kullback-Leibler divergence vanishes.

lim
N→∞

∫
log

Mθ0(yt)

Pρ(yt)
Mθ0(yt)dyt = 0 (5)

where we suppress the dependence on N on each object for notational clarity.15

Theorem 2 states that as N becomes large, the structural heterogeneous-agent equilibrium

model is well-approximated by a reduced-rank VAR(1). Since computing (4) is fast, this theorem

opens the door to rapid computation of the likelihood Mθ0(yt), intermediated by the reduced-rank

VAR(1). Importantly, though the logic justifying our algorithm involves the state-space system with

hidden factors, our algorithm conveniently does not require estimating them.

15As the proof in Appendix A.4 clearly shows, each object in this integral is dependent on N , i.e. MN
θN0

(yN
t ), and PN

ρN
(yN

t ). The

theorem states that both sequences converge in the limit, as N → ∞.
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3.3 Reduced-rank first-order VAR

Our theoretical results in the previous subsection justify a fast algorithm for approximating Mθ0(yt).

In this section, we explore two approaches to compute the reduced-rank VAR(1).

yt = Byt−1+at (6)

rank(B) = r

E[at a⊤t ] = Ω

The first approach implements the canonical correlations formulas of Anderson and Rubin

(1949) and Anderson (1951). Its main benefit is that it obtains analytic expressions for population

B and Ω, thus improving on accuracy and speed. The second uses a computationally efficient

algorithm that can be used when the structural model does not admit analytic expressions of

population covariances but can be simulated from. The approach builds on the Dynamic Mode

Decomposition and its connection to linear state-space models made by Sargent and Selvakumar

(2024). This algorithm is described in Appendix B.1.

Let the population covariance matrices be defined by

Σ0 = E[yt y
⊤
t ] Σ1 = E[yt y

⊤
t−1] (7)

The canonical correlation and variates in the population are defined by

(
−ρΣ0 Σ1

Σ⊤
1 −ρΣ0

)(
α

γ

)
= 0 (8)

where ρ, α, γ satisfy

∣∣∣∣∣ −ρΣ0 Σ1

Σ⊤
1 −ρΣ0

∣∣∣∣∣ = 0, α′Σ0α = 1, γ′Σ0γ = 1 (9)

Then, the reduced-rank VAR matrix is given by

B = Σ1ΓΓ
⊤ (10)
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where Γ = [γ1, . . . , γr]
⊤. Furthermore, the covariance matrix of the residuals is given by

Ω = Σ0 −BΣ0B
⊤ (11)

We employ the Sequence-Space Jacobian (SSJ) solution method of Auclert et al. (2021b) in both

applications below. That the solution provides a moving average representation of the observables

means that we can rapidly compute population covariances and therefore reduced-rank population

projection coefficients. In Appendix B.2, we outline how one can use the Frisch-Waugh-Theorem to

extend this algorithm to the reduced-rank VAR(2) case.

After computing B and Ω, the likelihood computation is straightforward, given by

f(y1, . . . ,yT+1) =
T∑
t=1

−1

2
log(2π)− 1

2
log det(Ω)− 1

2
(yt−Byt−1)

⊤Ω−1(yt−Byt−1) (12)

3.4 The number of factors

A natural question in our strategy is the choice of the number of factors in the linear state-space

model representation. In section 3.2 we described a heuristic test of computing principle compo-

nents on data simulated form the model. In this section, we propose other heuristic and quantitative

procedures that offers insights into the appropriate number of factors. In our experience, we have

found that our algorithm scales well with r, so one might choose to err on the side of caution and

choose a large r rather than a small one.

Check 1. Bai and Ng (2002) show that consistent estimation of the number of factors in the data

can be attained by minimizing the information criterion16

IC(n) = V (n) + n

(
M + T

MT

)
log

(
MT

M + T

)
(13)

where V (n) = (MT )−1
∑M

i=1

∑T
t=1(a

n
it)

2.

Check 2. Another approach is to simulate the cross-sectional data from M(θ) and study the decay

rate of the associated singular values. This approach is a common heuristic used by Dynamic Mode

Decomposition (DMD) practitioners17. An appropriate choice of r is the number after which the

16Though the theoretical analysis in Bai and Ng (2002) is done for principle components estimation of factor models, the same
theory applies to any other consistent estimation procedure, as M,T → ∞.

17See, for example, Brunton and Kutz (2022, sec. 7.2))
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decay rate of the singular values is close to zero.

Check 3. An additional implication of Proposition 1 is that the VAR residuals ãt are serially

uncorrelated. While it follows from the innovations representation of the state-space system (1),

there is nothing in the first-order VAR that imposes such a restriction. Simulate the data from the

model and compute the reduced-rank VAR residuals

ãt = ỹt −Br ỹt−1 (14)

Construct the sample covariance matrix (15) and choose the r that minimizes the Frobenius

norm of the covariance matrix of the residuals.

Ê[at+1 a
⊤
t ] =

1

T

T∑
t=1

ãt+1ã
⊤
t (15)

Check 4. The final check is to compute a metric for the ”fit” of the VAR to the data generated by

the model, akin to a modified R2. Simulate data from the model. For a fixed r, compute the VAR

residuals in equation (14).

Denote R2
i,r as the individual-level R2 for the VAR regression for i = 1, . . . ,M (i.e. for each row

of ỹt), given by

R2
i,r = 1−

∑T
t=2 ã

2
i,t∑T

t=2 ỹi,t −
1
T

∑T
t=2 ỹi,t−1

where ãi,t is the i-th element of ãt. Then, calculate the aggregate R2
r of the approximating model

by a weighted sum of the individual R2
i for i = 1, . . . ,M .

R2
r =

1
M

M∑
i=1

w(i)R2
i,r (16)

where w(m) is a weighting function chosen by the researcher.18 The appropriate r is the smallest

value that maximizes R2
r .

18In our example below, we choose an equal weighting scheme (w(i) = 1 i = 1, . . . ,M ), and sample individuals from the
stationary distribution of M.
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3.5 Algorithm

The above sections set out the theoretical and computational arguments for our estimation strategy.

To recap succinctly, the logic is as follows: Assumption 1 means that Mθ0(yt) has a linear state-space

representation with r ≪ N factors. Using Assumption 1, we show that a rank-r first-order VAR

approximates the linear state-space model Mθ0(yt) when N is large, and that the approximation

error vanishes at rate N . One might compute the likelihood using either the canonical correlations

method, or the DMD method, depending on the application. We also provide diagnostics that help

with choosing an appropriate value of r.

Algorithm 1 Approximation of Mθ(y1, . . . ,yT+1)

1. Fix some structural parameters θ

2. Choose the rank, r, as discussed in section 3.4

3. If population covariances are available analytically:

• Compute Br(θ) and Ωr(θ) using the equations (10) and (11)

4. If not:

• Simulate time-series ỹ1(θ), . . . , ỹJ+1(θ) from M for a large J and create data matrices
Ỹ(θ) and Ỹ

′
(θ)19

• Calculate Br(θ) and Ωr(θ) in (B.2) and (B.3)

5. Approximate the log- likelihood f(y1, . . . ,yT+1 |θ) implied by Mθ(yt) by computing (12)

Algorithm 1 presents pseudo-code for approximating Mθ(y1, . . . ,yT+1) for any θ.

3.6 Bayesian estimation

Our likelihood approximation algorithm can be easily paired with an optimization algorithm

for maximum likelihood estimation, or any Monte-Carlo sampling scheme to approximate the

posterior distribution of the parameters. Under Assumptions 1 and 2, our theorems imply that our

approximation error of posterior also vanishes as the cross-section becomes large (N → ∞). The

application in Section 5, estimates the model with a Random Walk Metropolis Hastings algorithm.

Algorithm 2 provides a pseudo-code for one iteration of the RWMH sampler.
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Algorithm 2 One iteration of Random Walk Metropolis Hastings
For iteration n with structural parameter θn−1:

1. Draw θ∗ ∼ q(·|θn−1)

2. Approximate likelihood f({yt}|θ∗) using Algorithm 1

3. Compute r = min
{
1,

f(y1,...,yT+1 |θ∗)p(θ∗)
f(Y |θn−1)p(θn−1)

}
4. Accept θ∗ with probability r

5. if accept, θn = θ∗, else θn = θn−1

3.7 Difficulties with other possible approaches

Kalman filter An obvious question at this point is why not simply evaluate the likelihood of

the linear-state space representation (1) with the Kalman filter? The answer is that evaluating the

likelihood via the Kalman filter requires knowing the matrices A,C,G,R, which itself must be

estimated from the simulated data. Then for every iteration over θ, one needs to estimate the

A,C,G,R and then use them to compute the likelihood of the data. Even for a small N , this is

computationally inefficient, let alone for a large N .

Moving average representation The sequence-space Jacobian solution method of Auclert et al.

(2021b) obtains a moving average representation of the model. Computing the likelihood requires

vectorizing theN ×T data matrix, so the associated covariance matrix isNT ×NT . In conventional

situations with only aggregate data, N is relatively small (typically less than ten), so the covariance

matrix is a computationally manageable. For our relevant case when N is large, the inversion of

the covariance matrix is computationally costly.

Whittle Approximation (Frequency domain) An alternative to computing the likelihood of the

moving average representation using the above approach of Auclert et al. (2021b) is to compute the

likelihood in the frequency-domain using the Whittle approximation, as in Hansen and Sargent

(1981), Christiano and Vigfusson (2003), and Plagborg-Møller (2019). The Whittle approximation de-

composes the entire N × T -dimensional variance-covariance matrix into the sum of N -dimensional

frequency-specific matrices. Using Fast Fourier Transform, the decomposition and associated

likelihood evaluation is fast. However, the approximation error depends on T , the number of

observations in the time dimension. Given the current availability of micro data, this dependence
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seems restrictive. This is unlike our method where approximation quality depends on M , which

seems like a far more satisfiable requirement currently. In Appendix C.2, we compare our method

with the FD estimation for both bias and efficiency via a monte-carlo exercise.

4 Laboratory exercise: Bewley-Huggett-Aiyagari economy with aggre-
gate shocks

4.1 Model description

The economy is populated by heterogeneous households of mass 1 that maximize their infinite-

lifetime utility E
[∑∞

t=0 β
t c1−ϕ

1−ϕ

]
. Each household have two idiosyncratic states: productivity ε

and assets a. We assume that productivity follows an exogenous markovian process, where the

probability of moving from ε to ε′ is given by π(ε, ε′). All households work an exogeneous amount

of hours n, normalized to equal 1. Households after-tax income is wt
ε
ξt
t

E[εξt ] where wt denotes the

hourly efficiency wage at time t, common to all households. We assume that log ξt follows an AR(1)

process.

log ξt+1 = ρξ log ξt + σξut+1 (17)

where νt+1 ∼ N (0, 1). Households can choose to save in assets a, which have a rate of return R.

Households also face a borrowing constraint a ≥ 0.

Output in this economy is produced by a representative firm that takes aggregate capital Kt

and labor Lt as inputs using a Cobb-Douglas production function Yt = ZtK
α
t L

1−α
t , where Zt is

aggregate total factor productivity. One unit of labor costs the firm wt, and one unit of capital costs

the firm Rt. We will assume that TFP follows an AR(1) process.

logZt+1 = ρz logZt + σzνt+1 (18)

where νt+1 ∼ N (0, 1).

Let Λt(a, ε) denote the mass of households with assets a and idiosyncratic productivity ε.

Households need to forecast prices R and w that depend on both aggregate productivity and

the distribution of assets in the economy. Thus, the household has two idiosyncratic (a, ε) and
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two aggregate states (Zt,Λt). Let V (a, ε;Zt,Λt) be the value function of household with assets a,

productivity ε and that faces aggregate productivity Zt and the aggregate distribution of wealth Λt.

The household’s problem is given by

V (a, ε;Zt,Λt) = max
{c,a′}

c1−ϕ

1− ϕ
+ β

∫
V (a′, ε′;Zt+1,Λt+1)π(ε

′|ε)dε′dF (Zt+1|Zt)

c(a, ε;Zt,Λt) + a′(a, ε;Zt,Λt) = y(εt;Zt,Λt) +R(Zt,Λt)a

y(ε;Zt,Λt) = w(Zt,Λt)ε

Λt+1 = Ψ(Zt,Λt)

where Ψ denotes the law of motion of the endogenous distribution of households, and where

we make explicit the dependence on aggregate states.

Market clearing implies that

1. the goods market clears

∫
c(a, ε;Zt,Λt)Λt(a, ε)dadε+

∫
a′(a, ε;Zt,Λt)Λt(a, ε)dadε = Yt + (1− δ)Kt (19)

2. the labor market clears

Lt =

∫
εΛt(a, ε)dadε (20)

3. the asset market clears

Kt =

∫
aΛt(a, ε)dadε (21)

Our goal is to estimate the shock parameters of this model, (ρz, σz, ρξ, σξ) using both aggregate

and data. In the next two sections, we outline how we organize the thousands of micro datapoints,

as well as our theoretical results that underpin our algorithm to perform such an estimation.
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4.2 Organizing the cross-section data

The household’s consumption policy function, similar to the value function, depends on the two

idiosyncratic states and the two aggregate states. Since the aggregate states are common for

all households, we suppress its notation by writing the consumption policy function at time t,

ct(a, ε) ≡ c(a, ε;Zt,Λt). By the organizing principle in Section 3.1, we bin individuals according to

their idiosyncratic states in each period, which for this model is assets and idiosyncratic productivity.

This requires discretizing the state-space into N points of the a × ε state space; and grouping

individuals into associated bins. Consumption of the bin (a, z) as the mean consumption of

individuals inside that bin. Repeating this for each N bins, we obtain our micro data vector at time

t – yt = [ct(z1), ct(z2), . . . , ct(zN )]
⊤. Finally, we create our data matrix, Y = [y1, . . . ,yT ] ∈ RN×T .

4.3 Connecting our theory

The main assumption underpinning our algorithm is that the equilibrium model has a Gaussian

linear state-space representation with relatively few states. Notwithstanding the rank condition,

this statement is uncontroversial in the standard heterogeneous-agent models. Figure 1 validates

this the low-rank assumption, by plotting simulated paths of consumption for 1000 households over

120 quarters.20 Although there are idiosyncratic divergences, the evolving cross-section appears

to exhibit a common factor. This observation is confirmed by computing principle components

of the data. The red line in the left chart plots the first principle component of the data, and the

right chart plots the contribution to total variance of the 10 leading principle components. It again

suggests the presence of one dominant common factor, r = 1. That N = 1000 in this setting implies

that our N >> r assumption is satisfied.21

Under Assumptions 1 and 2, Corollary 1 states that as the size of the cross-section goes large,

E[ft|yt] ≈ E[ft|yt]. This implies that the hidden factor can be approximately well inferred from

contemporaneous data compared to its infinite past. To see the theorem at work in our laboratory,

conduct the following experiment. We simulate an economy with 1000 individuals from the

structural model above. We imagine an econometrician inferring hidden states by only observing

consumption of N individuals. The econometrician then computes principle components of the

observed data.22 Figure 2 shows the estimated hidden factors for N = 5 (gray) and N = 500 (blue),

20See Appendix D.2 for the calibration underlying this exercise.
21Appendix E.2 performs the battery of checks outlined in Section 3.4, providing further evidence that r = 1.
22Importantly for the validity of our exercise, principle components does not assume any particular dynamic process for the data,

and so only uses concurrent data to estimate factors.
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Figure 1: Evolution of cross-section of consumption in a simulated economy

and the red line is the TFP series generating the data. All series are normalized to unit variance.

Indeed the econometrician’s estimate of the hidden factor closely resembles TFP when N is large.

4.4 Monte-carlo simulation

We use the above model as a laboratory to test-drive our theory in a controlled environment.

Calibrating the model as in Table D.2, we simulate consumption paths of 300 households drawn

from the stationary distribution, as well as aggregate output, nominal interest rate and aggregate

consumption for 120 quarters. We choose these dimensions to closely replicate what researchers

might face in practice. We employ our algorithm to compute maximum likelihood estimates of

the parameters of the shock processes in an effort to recover the values that generated the data.

We repeat this exercise 500 times to approximate the finite-sample distribution of the maximum

likelihood estimator. Table 1 shows the mean and standard deviation of the finite-sample distribu-

tions, and compares them against two alternatives common in the literature: 1) using only macro

data – output, consumption, interest rate – called Macro and 2) macro data and the second moment

of the consumption distribution, called Macro+. We call the estimation with the macro data and

micro data Macro+Micro. The values colored in red depict mean the estimates that are closest to

the true value, and the values in blue denote estimates that have the smallest standard deviation.

Apart from one case, the Macro+Micro estimates have mean estimates closest to the truth, with

the smallest dispersion.

Figure 3 plots the histogram of the distributions with Macro in gray, Macro+ in blue and

Macro+Micro in red. In the top panel is those for ρz and σz . The finite-sample distributions
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Figure 2: Estimate of hidden factor in simulated dataset

look similar across all three estimations, suggesting that there isn’t much to be learned from

the additional cross-section data in identifying the stochastic process for TFP. The story is much

different for the parameters of the redistribution shock (bottom panel). Estimating the model

with aggregate data on its own leads to severely biased and dispersed parameter estimates. For

example, the estimates for ρz ranges from 0.5 to 1.0, with very little mass around the true estimate.23

Adding the variance in consumption (Macro+) improves the bias and dispersion of the estimates.

Introducing the cross-section (Macro+Micro) dramatically reduces the bias and the dispersion in

the estimates, leading to more efficient and accurate inference.24

To see how our method exploits the information contained in the micro-data, consider an

individual with idiosyncratic states zj .25 Through the lens of the model, the change in consumption

between t and t+1 is caused can only be due to changes in Zt, ξt,Λt. The difference in consumption

response between individuals j and k, ∀j ̸= k provides information about the structural parameters.

This is especially ρξ and σξ, which determine the dynamics of post-tax income for each individual.

23The (gray) histogram bunches at 0.5 and 1.0 for ρz , which are the bounds we imposed for for the optimizer. The estimates would
be even more dispersed were we to allow for looser bounds.

24That marginal propensities to consume (MPCs) differ across households in the economy implies that ξt is formally identified in
this model – a redistribution of income from high to low productivity households itself generates an aggregate response. In that sense,
estimating the model on only aggregate data is not a ”strawman”.

25By our organization of the data, the time-series of their consumption is in the jth row of Y.
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Macro Macro+ Macro+Micro
Shock Parameter True value Mean Std Mean Std Mean Std

TFP
ρz 0.95 0.95 0.005 0.95 0.004 0.95 0.005
σz 0.5 0.52 0.04 0.51 0.04 0.50 0.03

Redistribution
ρξ 0.8 0.72 0.21 0.77 0.1 0.80 0.02
σξ 0.3 0.07 0.08 0.31 0.05 0.30 0.03

Table 1: Finite-sample parameter distribution with 500 monte-carlo samples

Figure 3: Finite sample parameter distribution across 500 monte-carlo samples.
Back to Introduction

While the qualitative result – that cross-section data is more informative of parameters that

affect the cross-section – is perhaps unsurprising, the magnitude of improvement even in this very

simple model is noteworthy. It is possible that in models with much richer interactions between the

cross-sections and aggregates, the addition of the cross-section may also help in more accurately

estimating other aggregate parameters than would otherwise be the case.

This section studied the impact of including micro data in a controlled environment and found

an improvement in bias and efficiency over conventional approaches. This is especially true for

parameters associated with redistribution. Next, we turn to an empirical application in which we

estimate the parameters of a medium scale HANK model.
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5 Application: Medium-scale HANK with earnings heterogeneity

We consider a medium-scale heterogeneous agent model, with aggregate shocks, following closely

Bayer et al. (2024). As has been well-documented in the previous literature, heterogeneous ex-

posures to aggregate shocks are a major source of difference between HANK models and RANK

model. This model features two important types, in a similar spirit to Alvez et al. (2020), the

parameters of which we will estimate using detailed micro data.

5.1 Model

Time is discrete and runs forever, t = 0, 1, . . . .

5.1.1 Households

There is a unit measure of infinitely-lived households in the economy. At time t, a household

consumes ct and supplies hours of labor ht, chosen by a labor union. They receive per period utility

U(ct, ht) =
c1−σ

1− σ
− φ

h1+ϕt

1 + ϕ
(22)

where σ is the inverse of the EIS and ϕ is the inverse of the Frisch elasticity of labor supply. A

household earns three kinds of income: labor, dividend and asset income. Labor earnings yt(z) and

dividend income Dt(z) depend on the household’s stochastic labor productivity z and are given by

yt(z) = wthtΓt(z)e
vrt (23)

Dt(z) = Dtz (24)

where wt is the real wage and Dt is the aggregate dividend in the economy and vrt is a monetary

policy shock. We normalize productivity to integrate to one. The function Γt(z), called the

”incidence function”, will play a central role in our analysis. We consider equation (23) as a

generalization of the standard setup in which Γt(z) = z and yt(z) = wthtz, where htz is interpreted

as efficiency hours. In such settings, z plays a dual role. On the one hand, it encodes the fact that

more productive households have higher earnings on average (rationalizing the interpretation of

efficiency hours); on the other, it implies that they are more sensitive to changes in wtht (aggregate

earnings) and therefore experience more volatile income over the business cycle. We follow Alves

et al. (2020) by replacing z with Γt(z) and ensure it also integrates to one. But unlike Alves et al.
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(2020) who estimate the parameters of Γt using external regressions on micro-data, we will estimate

the parameters of Γt jointly with the other structural parameters of the model using cross-sectional

data, which is made feasible by our likelihood approximation algorithm. See Section 5.2 for the

parameterization of Γt.

In the standard setup, household income reacts to monetary policy shocks vrt through its effect

on wtht and the Γt(z). Here we also allow for the direct effect of monetary policy on income.

Though this may seem unnatural at first, we interpret this as a simple way to express sectoral

employment and their heterogeneous exposures to interest rates. Coibion et al. (2017) provide

some empirical evidence for the presence of this channel. As described below our specification is

flexible enough to allow the data, through the estimation, to reject this importance of this channel.

Nevertheless, we stress that the important point for this paper is that our method provides a

convenient and fast way to estimate micro parameters such as these.

Post-tax earnings of the household take the Heathcote et al. (2017) form of (1−τyt )yt(z)1−ξ where

τyt determines the average level of the marginal tax rate and ξ determines its slope. Dividends are

also taxed at rate τDt . Finally, households can save and borrow through a risk-free asset, subject to

an ad-hoc borrowing constraint at ≥ a, which earns the real interest rate rt. Let Vt(a, z) denote the

value function of a household with assets a and productivity z. Given the above setup, its Bellman

equation is given by

Vt(a, z) = max
c,a′

{
c1−σ

1− σ
− φ

h1+ϕt

1 + ϕ
+ βEt

[
Vt+1(a

′, z′)|z
]}

(25)

c+ a′ = (1− τyt )yt(z)
1−ξ + (1− τDt )Dtz + (1 + rt)a (26)

yt(z) = wthtΓ
y
t (z) (27)

a′ ≥ a

5.1.2 Firms

Labor unions We closely follow Auclert et al. (2024) in what has become a standard setup in the

New Keynesian sticky wage literature. We assume that labor hours hit are determined by the labor

demand of unions, a continuum of which operate in a monopolistically competitive market. Each
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union k aggregates the efficient hours of its workers to a union-specific task

nkt =

∫
hiktΓ

y
t (zi)di (28)

A competitive labor packer aggregates labor hours across the unions with constant elasticity of

substitution ϵw

Nt =

(∫
n

ϵw−1
ϵw

kt dj

) ϵw
ϵw−1

(29)

and then sells it to intermediate goods firms for real wage wt. Each union k sets a common real

wage wkt amongst all its members subject to a quadratic adjustment cost à la Rotemberg (1982) on

nominal wages. We restrict the union to a uniform labor allocation rule, i.e. nikt = nkt. This implies

that the union sets the real wage wkt to maximize the average utility of its members. The union’s

problem is therefore given by

max
wkt+l,nkt+l

Et
∞∑
k=0

βl

{[
(Ct+l)

−σ(1− τyt )wkt+l − φNϕ
t+l

]
nkt+l −

ϵw
2κw

log

(
wkt+l
wkt+l−1

πt+l

)2
}

s.t. nkt+l =

(
wkt+l
wt+l

)−ϵ
Nt+l

nkt+l =

∫
hkt+l,iΓ

y
t (zi) di

Nt+k =

(∫
n

ϵw−1
ϵw

kt+l dk

) ϵw
ϵw−1

where the union takes as given the packer demand as a function of its relative real wage wkt
wt

.

This setup implies that all unions set the same real wage, i.e. wkt = wt and all households are

demanded the same efficient hours, i.e. nkt = Nt, and so the first order condition of the labour

union leads to the wage Phillips curve

πwt = κw

[
φNϕ

t − ϵw − 1

ϵw
(1− τyt )(Ct)

−σwt

]
Nt + β Et πwt+1 + vwt (30)

where vwt is a AR(1) wage-markup shock.

Final-good producers A perfectly competitive representative final-good producer aggregates the

continuum of retail firms j ∈ (0, 1) with constant elasticity of substitution ϵ
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Yt =

(∫ 1

0
y

ϵ−1
ϵ

jt dj

) ϵ
ϵ−1

Taking prices as given, the demand for intermediate good j is given by

yjt =

(
pjt
Pt

)
Yt, where Pt =

(∫ 1

0
p1−ϵjt dj

) 1
1−ϵ

(31)

Intermediate-good firms We follow closely a standard specification of intermediate-good firms.

Intermediate-good firms operate in a monopolistically competitive market. Each differentiated

good j is produced with a Cobb-Douglas production function

yjt = Ztk
α
jtl

1−α
jt (32)

Firms hire capital and labor at prices rkt and wt and pay a fixed cost Ξ. In choosing prices pjt,

they take into account their demand by the final good firm and Rotemberg (1982) quadratic price

adjustment costs Ψp
jt on their price inflation relative to a fraction ιp of the price changes last period.

The Bellman equation for the retail firms is consequently

JRt (pjt−1, pjt−2) = max
kjt,ljt,yjt,pjt

{
pjt
Pt
yjt − wtnjt − rkt kjt −Ψp

jt − Ξ + Et

[
JRt+1(pjt, pjt−1)

1 + rt

]}

subject to

yjt = Ztk
α
jtl

1−α
jt

yjt =

(
pjt
Pt

)−ϵ
Yt

Ψp
jt =

ψp
2

[
log

(
pjt
pjt−1

)
− ιp log

(
pjt−1

pjt−2

)]2
Yt

The first order condition of the firms imply constant capital-labor ratios

(1− α)

α

rkt
wt

=
Nt

Kt

In a symmetric equilibrium where all firms choose yjt = yt, kjt = kt = Kt and ljt = lt = Nt

implies identical marginal costs given by

mct =
1

Zt

(
rkt
α

)α(
wt

1− α

)1−α
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giving rise to the aggregate production function

Yt = ZtK
α
t N

1−α
t (33)

and the aggregate price Phillips curve with associated price markup shock vpt that follows an

AR(1) process.

πt − ιpπt−1 = κp

(
mct −

ϵ− 1

ϵ

)
+

1

1 + rt
Et
[
Yt+1

Yt
(πt+1 − ιpπt)

]
+ vpt (34)

Furthermore, aggregate resources spent of adjustments costs are

Ψp
t =

ψp
2

[log (πt)− ιp log (πt−1)]
2 Yt

and profits from the intermediate firms, distributed as dividends are given by:

DR
t = Yt − wtNt − rktKt −Ψp

t

Capital good firms A representative firms owns the capital stock and rents it to the intermediate

good producers at rate rkt . The firm chooses investment It and capital tomorrow Kt+1 subject to

the capital law of motion. The Bellman equation is given by

JKt (Kt, It−1) = max
Kt,It

{
rktKt − It + Et

[
JKt+1(Kt+1, It)

1 + rt

]}
(35)

subject to

Kt+1 = (1− δ)Kt + µte
vµt

[
1− S

(
It
It−1

)]
It (36)

where δ ∈ (0, 1) is the depreciation rate of capital, and µt is the marginal efficient of investment

as in Justiniano et al. (2011), and S(·) is a convex function that satisfies S(1) = S′(1) = 0 and

S′′(1) = ψi. We will set S(x) = ψi

2 (x− 1)2. Defining Tobin’s Q as the marginal value of capital at

time t, ∂KJt+1(Kt,It)
1+rt

, the dynamics of investment are characterized by

Qt =
rkt+1 + Et[Qt+1(1− δ)]

1 + rt+1
(37)
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Finally, the capital good firm makes profits, distributed as dividends

DK
t = rKt Kt−1 − It (38)

5.1.3 Government

The fiscal authority issues one-period real bonds Bt, conduct government spending Gt and collects

taxes Tt. It is bound by the budget constraint

Bt+1 + Tt = (1 + rt)Bt +Gt (39)

Given a particular income tax rate τyt , tax revenues are the sum of labor and dividend taxes

Tt = wtNt −
∫
(1− τ tt )y(z)

1−ξdz + τDssDt (40)

The tax rate τyt is chosen according to a rule that prevents large swings in the tax rate but

ensures that the real government debt remains stationary.

Tt = τysswtNt + τDssDt + (1− ρb)(Bt −Bss) (41)

Finally, we assume monetary policy follows a smoothed Taylor rule

it = ρrit−1 + (1− ρr)(ϕππt + rss) + vrt (42)

with monetary policy shock vrt , while the Fisher equation links the nominal interest rate to the real

interest rate

(1 + rt) =
1 + it−1

1 + πt
(43)

Aggregate shocks There are seven aggregate shocks: TFP shock, monetary policy shock, govern-

ment spending shock, price markup shock, wage markup shock, labor incidence shock, dividend

incidence shock.Each follow an independent AR(1) process.
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logZt = ρZ logZt−1 + σΘϵ
Z
t

vrt = ρrv
r
t−1 + σrϵ

r
t

vgt = ρgv
g
t−1 + σgϵ

g
t

vpt = ρpv
p
t−1 + σpϵ

p
t

vwt = ρwv
w
t−1 + σwϵ

w
t

vµt = ρµv
µ
t−1 + σµϵ

µ
t

Equilibrium The aggregate resource constraint is

Yt −Ψp
t − Ξ = Ct +Gt + It (44)

The asset market clearing is

At = Bt (45)

Labour market clearing requires

ht = Nt (46)

A rational expectation equilibrium consists of a sequence of policy functions {ct, at, ht}, a sequence

of value functions {Vt}, a sequence of prices {wt, rkt , πt, πwt , τy, rt, it}, a sequence of aggregate objects

{Yt, Ct,Kt, Nt,Ψ
p
t , Dt, It, Qt, Bt, Tt}, a sequence of distribution {Ft}, a sequence of exogenous states

{Θt, v
r
t , v

g
t , v

p
t , v

w
t , v

µ
t }, and a sequence of beliefs over prices such that

1. Given the sequence of value functions, prices, and policy functions, the household Bellman

equation holds.

2. Given the sequence of beliefs over prices, all agents optimize.

3. The evolution of the distribution is consistent with the policy.

4. All markets clear.
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5.2 Incidence functions

A differentiating aspect of this model is our specification of the incidence function Γyt (z), that

encodes differences in sensitivity to aggregate income across the earnings distribution. We define

the incidence function

Γyt (z) =
z
(

wtNt
wssNss

)γy(z) (
ev

r
t
)−γr(z)

Ez
[
z
(

wtNt
wssNss

)γy(z) (
ev

r
t

)−γr(z)] (47)

with the normalizations E[zγy(z)] = E[zγr(z)] = E[z] = 1. In steady-state, Γyt (z) = z. Out of

steady state, the normalizations imply that γy(z) represents the elasticity of idiosyncratic income to

aggregate income, i.e.

∂ log yt(z)

∂ logwtNt
= γy(z) (48)

and that the elasticity of idiosyncratic income to monetary policy shock is given by

∂ log yt(z)

∂vrt
= γy(z)

∂ logwtNt

∂vrt
− γr(z) (49)

We call γr(z) the excess elasticity since it is additional response to a monetary policy shock over

and above the response through aggregate income.26 We define γi(z) = Beta(Fz(z);α
i, 1) for i ∈

{y, r}, where Fz(z) is the cumulative distribution function for z and Beta(Fz(z);α, 1) : [0, 1] → R+

is the beta distribution with parameters (α, 1). Figure 4 plots the income elasticity for different

values of αy. A value αy < 1 determines a downward sloping elasticity as z increases, implying

that low income individuals have a higher income sensitivity to aggregate income than high income

individuals; and conversely for αy > 1. The value αy = 1 covers the equal-elasticity case across all

households. 27, 28

26See Appendix A.7 for derivation of these relations.
27Similarly, αr < 1 implies that the sensitivity to monetary policy is further heightened for low income households, and vice versa

for high income households.
28A common quantification of this function in the literature is to calibrate γy(z) by estimating regressions of the form

log yit = α+ βi log Yt + eit ∀i (50)

See Auclert and Rognlie (2018),Alves et al. (2020) for exampels of this approach. In our model setup however, the contemporaneous
relationship between wt, Nt and vrt , implies the above regression will produced biased estimates of βi. Structural estimation is immune
from these criticism since is estimates all the parameters jointly.
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Figure 4: Income elasticity for different values α

5.3 Solution in sequence-space

We employ the sequence-space Jacobian (SSJ) method of Auclert et al. (2021b) to solve for a

linearized equilibrium of the model. Although the original SSJ method is developed for computing

the aggregate variables, it can be easily extended to obtain a solution for the micro observables. To

see this, let ct = (c1,t, . . . , cM,t)
⊤ be the vector of cross-sectional consumption and ϵt ∈ RS be the

vector of shocks at time t. We have the following proposition.

Proposition 2. In the linearized equilibrium, ct has a moving average (MA) representation

ct = css +

∞∑
j=0

Θc
jϵt−j (51)

Furthermore, the MA coefficient matrix Θc
j is given by

Θc
j =

∑
p∈P

J y
p F

jIpe

where P denotes the set of aggregate inputs that enter the household’s problem and

• J c
p ∈ RM×∞ is the cross-section of gradients of consumption wrt. the future path of aggregate input p

• Ipe ∈ R∞×S is the impulse response functions of aggregate input p
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• F is the shift-forward operator

In light of Proposition 2, simulation of the micro consumption dynamics is straightforward, and

computation of the moving average coefficient matrices is trivial because J c
p and Ipe are products

of the SSJ method.29 To operationalize the algorithm, we truncate the horizon, to T = 300. This

implies that J c
p ∈ RM×T , Ipe ∈ RT×S .

5.4 Population VAR(1) coefficients

Because the SSJ solution method implies a (truncated) moving-average representation of the

observables (both aggregate and cross-section), the population covariances are thus available in

closed-form, given a θ. We can therefore use the population canonical correlations approach in

computing the reduced-rank VAR, as outlined in Section 3.3.

To obtain the VAR(1) covariance matrix, we need the coincident and lagged covariance matrix.

This is given by

E[yt y⊤
t ] =

J∑
j=0

Θy
jΣΘy

j
⊤ (52)

E[yt y⊤
t−1] =

J∑
j=0

Θy
jΣ−1Θ

y
j
⊤ (53)

(54)

where Σ = diag(σ21, . . . , σ
2
S) and Σ−1 is the same matrix but shifted one below the off diagonal

Σ−1 =



0 0 . . . 0 0

σ21 0 . . . 0 0

0 σ22 . . . 0
...

...
...

0 0 . . . σ2S 0


(55)

Having these population covariances in closed form rids the need for simulating the model,

allowing for a much faster and accurate likelihood computation.

29The gradients J c
p are computed by backward iteration in the first step of the ”Fake news algorithm”. We refer interested readers

to the original paper Auclert et al. (2021a).
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5.5 Calibration

The model is in quarterly frequency. Table 2 reports the parameters that we calibrate. In addition,

we internally calibrate β to clear the asset market, which has value 0.967. We normalize output in

steady state to one, and our calibration implies that labor share is 63% of output.

We estimate other 7 model parameters: [κw, κp, ρi, ρr, ϕπ, αy, αmp], and the AR(1) persistence

and innovation variance parameters of the 6 aggregate shocks above. In all, this gives us 19

parameters to estimate.

Parameter Interpretation Value Justification
σ CRRA 0.5 Standard
ϕ−1 Frisch elasticity 2.0 Standard
α Capital share 0.33 Standard
τ ssd Dividend tax rate 0.2 US tax code
G/Y Steady-state government spending ratio 0.2 Auclert et al. (2021a)
δ Capital depreciation rate 0.02 Auclert et al. (2021a)
ψi Capital adjustment cost 1.5 Bardóczy and Guerreiro (2023)
ιp Inflation indexation 0.25 Bardóczy and Guerreiro (2023)

(ϵ− 1)/ϵ Steady-state price markup 1.06 Auclert et al. (2020)
(ϵw − 1)/ϵw Steady-state wage markup 1.1 Auclert et al. (2021a)

Table 2: Calibrated parameters

5.6 Data

We estimate our model using individual-level consumption and income data, and macro data, con-

sisting of aggregate output, aggregate consumption, aggregate investment, interest rate, inflation

and nominal wage growth. The organization of the micro data into model-relevant objects is an

important step of our methodology, which we describe below.

5.6.1 Micro data

The micro data on consumption and income is sourced from the Interview Survey section of the

Consumer Expenditure Survey (CEX), which is a rotating panel of representative households of

the U.S. population and provides detailed information about U.S. household expenditures and

income. Each household is interviewed for a maximum of four quarters. Expenditure is reported

each quarter, income is reported the first and last quarters, and assets is reported only in the last

quarter. We use CEX data between 1990 Q1 and 2020 Q1 to avoid the COVID-19 period.
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Labor income is defined as wage or salary income (FSALARYX) plus self-employed income

(FNONFRMX). The measure of individual consumption is the sum of expenditures in the current

(TOTEXPCQ) and past quarter (TOTEXPPQ). This is a common adjustment made suggested by the

BLS to account for the possibility that even though interviews are conducted once every three

months, they might not coincide with calendar quarters. Our notion of assets in the model is liquid

assets in the data. Prior to 2013, our measure is equal to the value in checking/brokerage accounts

(CKBKACTX) plus saving accounts in banks (SAVACCTX), credit unions etc. and loads and securities

held in mutual funds (SECESTX). After 2013, the concept is conveniently aggregated into the total

market value in checking, savings, money market accounts, CDs, etc. and other similar accounts

(LIQUIDX).

We do some preliminary cleaning of the data: we drop households where the principal earner

is below 25 or above 65 years old; those where incomes are negative and those whose quarterly

consumption are above two times their annual income. Since output in the model is normalized to

1, and the labor share is 63%, we normalize assets per period by dividing by 1.6 times the average

labor income to be consistent with the output normalization in the model.

Inferring individual productivity. Since households in our model have two idiosyncratic states,

productivity zit and assets ait, we must estimate the unobserved productivity of each individual

every period. We follow Floden and Lindé (2001) whose identifying assumption is that permanent

income differences can be captured by (observable) individual-specific characteristics. We estimate

a pooled Mincer-style regression and regress log labor income on age, age-squared, and dummies

for gender, occupation and education level with time-fixed effects

log yit =φt + φ1 + φ2AGEit + φ3AGE
2
it+ (56)

φMMALEit +φEEDUit + φOOCCit + zit (57)

where EDU = [EDU1, EDU2, . . . , EDU8]
⊤ is a vector of education dummies and OCC =

[OCC1, OCC2, . . . , OCC15]
⊤ is a vector of occupation dummies. Table 3 shows the results of the

regression. The adjusted R2 is around 0.2, inline with the original Floden and Lindé (2001) results.

The persistent component of log-productivity analogous to productivity in the model is defined as

the residual of the above regression, zit = log yit − ̂log yit, which we compute each period for all

individuals in the dataset. At this stage, for each period, we have data on individuals’ consumption,
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income, their liquid assets and their productivity, which we will now group into bins.

Variable Estimate p-value
const 8.038 0.00
AGE 0.081 0.00
AGE2(/100) -0.089 0.00
MALE 0.124 0.00
EDUCA 0.024 0.00
R2 0.24
TN 341,785

Table 3: Labor income regression results on U.S data

To construct our micro data matrix each period, we split productivity distribution into deciles

and the asset space into 9 equally spaced bins, ranging from $0 to $200,000. Taking the cartesian

product with the productivity bins gives us 81 bins.30 In each period, we group individuals into

these bins. We compute consumption for each bin as the mean consumption of the individuals in

that bin, and analogously for income. In the event that a period has some bins that are empty, we

linearly interpolate between the missing data within each period.31 Repeating this for every period

and stacking the vectors horizontally gives us a micro-data matrix, one row of which corresponds

to the time series of (say) consumption of individuals at the 40th percentile of productivity and

$10,000 in liquid assets. Finally, for each row, we compute growth rates, seasonally adjust, and

demean. The result of these operations is a quarterly series of consumption for individuals in each

point of the discretized state-space.

One interesting interpretation of our data is that each column of our data matrix is an estimate

of the consumption policy function in a given period. Figure 5 plots the time-average (or ”steady-

state”) consumption policy functions as a ratio to average labor income. As our economic model

predict, consumption appears to share some familiar characteristics to those in our economic

models: they are increasing in productivity and assets, and are highly non-linear at low asset levels

and linear at high asset levels.32

5.6.2 Macro data

For macro data, we follow Bayer et al. (2024) in terms of data sources. We use growth rate of: real

GDP (GDPC1) per capita, real personal consumption expenditures per capita (PCE), real investment

30Our choices imply that the bins are kept fixed in all periods.
31Figure G.3 in the Appendix visualizes the extent of the missing data before this operation.
32Arellano et al. (2017) infer more general consumption and income functions from PSID data that are non-parametric functions of

many covariates. We do not take that approach here since our goal is estimation of the structural model in Section 5.1
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Figure 5: Consumption policy function inferred from CEX data

per capita (FPI), GDP deflator (GDPDEF), and nominal wages (PRS85006101). Our measure of the

nominal interest rate the fed-funds rate (FEDFUNDS), which we splice with the shadow fed-funds

rate of Wu and Xia (2016) between 2008-Q4 and 2015-Q4. We use CNP16OV in our per capita

calculations. Our sample begins in 1959Q1 - 2020Q1.

5.7 Estimation

We estimate the model using two datasets: one that includes both micro and macro data as outlined

above, which we call Macro+Micro; and another that only uses the macro data, which we call

Macro.

We estimate the remaining parameters using Bayesian sampling methods. First, we perform an

extensive mode-finding algorithm, by initializing a bounded L-BFGS-B algorithm at 10 random

points in the permissible state space. We then take the parameter vector associated with the highest

posterior value and perform an additional optimization using the Nelder-Mead method. For

the Macro+Micro estimation, we employ our method to efficiently approximate the likelihood;

and for the Macro estimation, we use the standard likelihood formulas for a moving average

representation as described by Auclert et al. (2021a).

We then approximate the posterior distribution of the parameters using a random-walk Metropo-
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lis Hastings algorithm with tuned proposal covariance matrix and adaptive step size (Atchadé and

Rosenthal (2005)). We generate 300,000 draws and discard the first 50,000. Though we employ a

simple MCMC algorithm here, our method doesn’t preclude more sophisticated techniques, such

as the Hamiltonian Monte Carlo (Hoffman et al. (2014)) or Sequential Monte Carlo (Herbst and

Schorfheide (2014)).
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Prior Posterior (Macro+Micro) Posterior (Macro)
Parameter Interpretation Distribution Mean Std Mean Std Mean Std
κp Phillips curve slope Gamma 0.05 0.03 0.121 0.018 0.23 0.11
κw Wage Phillips curve slope Gamma 0.05 0.03 0.165 0.042 0.08 0.02
ϕπ Taylor Coefficient Normal 1.5 0.3 2.228 0.056 1.64 0.18
ϕT Tax smoothing Beta 0.5 0.2 0.06 0.011 0.93 0.04
ρi Taylor persistence Beta 0.5 0.2 0.875 0.017 0.17 0.09
αy Aggregate income incidence LogNormal 1.0 0.5 0.078 0.012 0.75 0.13
αmp Monetary policy incidence LogNormal 1.0 0.5 0.418 0.083 1.34 0.34
ρZ Persistence TFP shock Beta 0.5 0.1 0.473 0.046 0.43 0.1
ρvr Persistence Monetary policy shock Beta 0.5 0.1 0.373 0.063 0.76 0.06
ρvG Persistence Government spending shock Beta 0.5 0.1 0.429 0.03 0.51 0.09
ρvw Persistence Wage markup shock Beta 0.5 0.1 0.197 0.047 0.92 0.01
ρvπ Persistence Price markup shock Beta 0.5 0.1 0.205 0.038 0.41 0.09
ρvµ Persistence MEI shock Beta 0.5 0.1 0.995 0.002 0.44 0.09
σZ Std TFP shock Inverse Gamma 1.0 0.2 0.509 0.066 0.16 0.04
σvr Std Monetary policy shock Inverse Gamma 1.0 0.2 0.076 0.011 0.14 0.03
σvG Std Government spending shock Inverse Gamma 1.0 0.2 0.259 0.028 0.21 0.04
σvw Std wage markup shock Inverse Gamma 1.0 0.2 1.095 0.096 0.12 0.03
σvπ Std price markup shock Inverse Gamma 1.0 0.2 0.201 0.019 0.10 0.02
σvµ Std MEI shock Inverse Gamma 1.0 0.2 0.419 0.085 0.18 0.04
σY Output meas. error Inverse Gamma 1.0 0.2 0.11 0.01 0.35 0.04
σC Consumption meas. error Inverse Gamma 1.0 0.2 0.01 0.005 0.43 0.04
σi Interest Rate meas. error Inverse Gamma 1.0 0.2 0.01 0.004 0.64 0.05
σπ Inflation meas. error Inverse Gamma 1.0 0.2 0.01 0.003 0.12 0.02
σw Wage inflation meas. error Inverse Gamma 1.0 0.2 0.04 0.003 0.86 0.06
σI Investment Growth meas. error Inverse Gamma 1.0 0.2 0.03 0.002 0.38 0.12
σc Micro consumption meas. error Inverse Gamma 3.0 0.4 4.283 0.037 - -
σy Micro income meas. error Inverse Gamma 3.0 0.4 0.93 0.021 - -

Table 4: Prior and posterior parameter estimates. NOTE: All standard deviations are presented ×100
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5.8 Results

Table 4 presents the posterior mean and standard deviation of the structural parameters from

the estimations. The general observation is that, similar to the monte-carlo study in Section 4,

Macro+Micro estimates are typically more precisely estimated than Macro estimates. A few more

comparative observations stand out.

First, Macro+Micro estimates imply a slope of the price Phillips curve half that of Macro

estimates, while the slope of the wage Phillips curve is estimated to be almost double. These imply

that, all else equal, wages are significantly more volatile in the Macro+Micro economy and prices

significantly less volatile.

A second important difference between the estimates is the aggressiveness of monetary policy,

characterized by lag coefficient in the Taylor rule, ρi. Macro+Micro estimation has a ρi of 0.88,

compared to 0.17 for Macro. This highly persistent process implies that means that monetary

policy is slow to react to inflationary shocks, relative to the Macro model.

The third key difference is that almost all the estimated standard deviations of the structural

shocks are higher for Macro+Micro, particularly the wage markup shock σεw , which is almost

ten times higher, and the marginal efficiency of investment shocks σεµ which is around four times

higher.

Finally, there are meaningful differences in the estimates of the incidence parameters αy and

αmp. To interpret them more easily, Figure 6 plots the percentage change in idiosyncratic income

associated with a one percent increase in aggregate income (left) and 25bps (contractionary) mone-

tary policy shock (right). The swathes denote the 90% credible set, while the solid lines denote the

mean.

In the left panel, Macro+Micro estimates imply that incomes for both the lowest and highest

decile increase by around 1.5% following a 1% increase in aggregate income. This is in contrast with

the middle of the productivity distribution, whose income only increases by 0.75%. The U-shape of

the elasticities is consistent with empirical studies such as Guvenen et al. (2017), who use US census

data to quantify the earnings elasticity to aggregate GDP. They estimate a regression of individual

income on aggregate GDP and interpret the regression coefficient as the sensitivity to aggregate

fluctuations. On the other hand, the Macro estimation obtains an upward sloping shape to the

incidence function, with the lowest decile’s incomes only increasing by 0.25%, while the income of

the highest decile increases by around 2%.
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Figure 6: Estimated income elasticities by percentile

The right panel shows the excess elasticity (γr(z)) of idiosyncratic income conditional on a 25bps

monetary policy shock. Positive values indicate that incomes react more strongly to monetary

policy over and above its indirect effect through aggregate income, and vice versa. Macro+Micro

estimates dictate that low income households are more exposed to monetary policy shocks, while

Macro estimates suggest it is high income households that are over exposed. However, the Macro

estimates are imprecisely estimated, such that the 90% credible band crosses the zero line.

That low income households are more sensitive to monetary policy shocks is consistent with

the empirical literature. Coibion et al. (2017) use the CEX data to estimate a local projection of

consumption and inequality on identified monetary policy shocks of Romer and Romer (2004).

They find that income inequality – defined as either the cross-sectional standard deviation, the Gini

coefficient or the p90-p10 – increases following a contractionary monetary policy shock.

5.8.1 Comparison of second moments

Next, we compare our parameter estimates by studying their ability to match the second moments

of the data. Figure 7 plots the standard deviation of idiosyncratic income for each decile of

productivity for the data, Macro+Micro and Macro. We compute the model income volatilities

analytically, since the sequence-space jacobian solution obtains an MA representation.33

The data, in gray, exhibits a U-shaped pattern, with low and high income households sharing

33Since Macro does not have estimates for the measurement error of the micro variables, we also do not include them in the
Macro+Micro volatility calculations. Including them makes the Macro+Micro income volatilities even closer to the data counterparts.
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Figure 7: Idiosyncratic income volatility
Back to Introduction

similar levels of volatility. The Macro+Micro estimation is able to match both the level and the

shape of the data in this dimension, which is a direct consequence of the elasticities in Figure 6.

The Macro estimates imply a much smaller level of volatility across the distribution. Moreover, it

implies – counterfactually – that high income households have substantially more volatile income

than the low income households.

In comparing the models’ implications for aggregate quantities, a different picture emerges.

Table 5 shows the standard deviation of the aggregate variables used in the estimation and compares

that to those implies by both Macro and Macro+Micro. It shows that Macro estimates are able

to closely match most of the second moments, and particularly so for output, consumption and

investment. On the other hand, Macro+Micro estimates generally overstate the volatility of

aggregate variables. For example, quarterly consumption volatility in the data is 0.57% versus

0.72% for Macro+Micro; investment is 1.87% in the data versus 3.43% for Macro+Micro; and

wage inflation is 0.89% in the data versus 1.0% in Macro+Micro.

Standard deviation (%)
Output Consumption Investment Price inflation Wage inflation Interest rate

Data 0.60 0.57 1.87 0.22 0.89 0.69
Macro 0.60 0.61 1.79 0.44 0.81 0.74
Macro+Micro 0.59 0.72 3.43 0.36 1.00 0.40

Table 5: Standard deviation of aggregate variables
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Two key driving forces in these differences are the large estimated standard deviations of TFP

and wage markup shocks in Table 4. Though the large standard deviations in Macro+Micro are

useful in being able to match the micro income volatility through the relation yt(z) = Γt(z)wtNte
εrt ,

they also imply high volatility at the aggregate level – seen by the larger wage inflation and

consumption volatilities.

Another key difference in Table 5 is the standard deviation of investment. Here, the differences

come from shocks to TFP and marginal efficiency of investment, which play a crucial role in

generating the appropriate amount of volatility in consumption at the micro level. To see this,

table 6 presents the average consumption volatility of individuals grouped by productivity decile

for various versions of the model. The Macro+Micro column reports the average consumption

volatility in the estimated model. The remaining columns report the same object shutting down

each structural shock in turn. The cells in red denote the column that corresponds to the largest

fall in the volatility from the Macro+Micro value. The table shows that TFP is a dominant driver

of consumption volatility for low productivity individuals, followed closely by the investment

shock. For the high productivity individuals, the investment shock is the single dominant driver

of consumption volatility. Why? The reason comes down to the positive covariance between

consumption and investment, conditional on the MEI shock. In the model, following a positive

MEI shock, firms increase investment and hire more workers, all else equal. Due wage and price

rigidities, aggregate labor income rise too. The estimated ”U”-shaped elasticities imply that affects

both low- and high- income households more. Thus, larger standard deviations of the MEI shock

imply larger standard deviations of income for high-income households. A similar mechanism is at

play in Auclert et al. (2023), who document a significant role of investment in the propagation of

monetary policy shocks.

Prod. pctile Macro+Micro εZ = 0 εr = 0 εG = 0 εw = 0 επ = 0 εµ = 0

p10 0.18 0.17 0.18 0.12 0.18 0.18 0.15
p20 0.32 0.26 0.32 0.29 0.32 0.32 0.27
p30 0.42 0.32 0.41 0.4 0.41 0.42 0.35
p40 0.48 0.35 0.46 0.46 0.46 0.47 0.39
p50 0.48 0.37 0.46 0.47 0.47 0.47 0.38
p60 0.32 0.29 0.29 0.31 0.31 0.31 0.18
p70 0.37 0.36 0.33 0.37 0.37 0.36 0.19
p80 0.43 0.43 0.4 0.43 0.43 0.43 0.20
p90 0.48 0.48 0.45 0.48 0.48 0.47 0.20
p99 0.52 0.52 0.49 0.52 0.52 0.51 0.20

Table 6: Standard deviation of idiosyncratic consumption
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5.8.2 External validation

Given such meaningful differences in the models, it is especially useful in this context to compare

them against some kind of empirical benchmark. We compare them to the impulse response of

output and inflation to a 25bps (contractionary) monetary policy shock.

For our empirical benchmark, we estimate a monthly SVAR-IV with 12 lags between 1973

and 2020 of the following variables, instrumenting the monetary policy shock with the identified

monetary policy shock of Bauer and Swanson (2023). We omit the September 2008 from the sample,

which coincides with the Lehmann Brothers bankruptcy, by setting the monetary policy shock to

zero in that month.

• 1-year nominal Treasury yield (DGS1)

• Unemployment rate, defined as the number of unemployed as a percentage of the labor force

(16 years or older) (UNRATE)

• The change in log CRB Commodity index (CRBI)

• PCE inflation, defined as the change in the log PCE Price index (PCEPI)

• Detrended log real GDP. We use the monthly real GDP series of Brave-Butters-Kelley, and

estimate the trend by an index with growth rate equal to the mean growth rate of the log real

GDP. The detrended series is simply the deviations from that linear trend. Implicitly in this

transformation, we assume that real GDP was at trend in 1973 Q1.

Figure 8 plots the impulse responses for output (left panel) and inflation (right panel) to a 25bps

contractionary monetary policy shock. Each panel plots the theoretical impulse response functions

implied by Macro+Micro (red) and Macro (green). The colored swathes denote the 90% credible

sets. The gray line denote the SVAR-IV IRFs and the gray swathe denotes the 68% confidence

bands34.

On impact following the monetary policy shock, output falls by 0.15ppts in the Macro+Micro

model, compared to 0.04ppts for Macro. This is compared to a 0.21ppt fall in output from the

empirical IRF. For inflation, Macro+Micro implies a 0.09ppt fall in inflation on impact, compared

to a 0.05ppts for Macro. This is compared to a negative 0.13ppts response on impact in the SVAR-IV

IRF. All in all, the larger responses of both output and inflation in Macro+Micro model appear

34The 60% confidence bands are computed by 10,000 draws of the Wild bootstrap.
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Figure 8: Impulse response to 25bps contractionary monetary policy shock

to be closer to those estimated by a SVAR-IV, which is crucially external (out of sample) to the

structural estimation.

The mechanism, through the lens of the model, is as follows. A positive monetary policy shock

increases the real rental rate of capital, which firms respond to by scaling back investment, thus

reducing output. Since less labor is required, aggregate labor income also falls. Low income house-

holds bear the brunt of this decrease, given the U-shaped elasticities that Macro+Micro estimates.

These households are the ones with the high MPCs, and so cut their individual consumption

substantially, which further amplifies the fall in output. The flatter Phillips curve, combined with

the highly persistent Taylor rule implies that the central bank does very little to offset the recession

in this economy. This is in direct contrast to Macro in which i) does not exhibit the ”U-shape” in

labor incidence and ii) the steep Phillips curve and the low Taylor rule persistence combine to

significantly accommodate the shock.

5.8.3 Consumption amplification

We use the model to infer how heterogeneous earnings exposures affect the amplification of mone-

tary policy shocks. For both models, we compute the impulse response of aggregate consumption

to a 25bp contractionary monetary policy shock. We compare this to an equal exposure benchmark

computed by setting αy = αmp = 1. Table 7 reports the first quarter consumption response to

monetary policy shocks for both estimated models; and Figure 9 shows the box plots of the ampli-

fication factor arising from heterogeneous exposures. A value of one implies no amplification of

consumption. The whiskers plot the 90% credible set and the box plots the 68% credible set.
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Consumption falls by 0.04ppt in the Macro+Micro model following a 25bps monetary policy

shock, while the equal exposure benchmark produces a similar drop in consumption of 0.03ppts.

As shown in Figure 9, this results in a mean amplification of around 40% with a 90% credible set

ranging from 30% to 46%. The significant amplification here is due to the ”U”-shaped incidence

functions. In this model, Low income/high MPC households are highly exposed to the monetary

policy shock, and significantly adjust their consumption. This is further amplified by the high

slope of the Phillips curve and high Taylor persistence meaning that the monetary policy does little

to accommodate the economy. The consumption response is much tamed in the Macro model.

The response on impact is -0.017%, compared to -0.016% in the equal exposure benchmark. This

translates to less than 10% amplification.35 The lack of response comes from larger αy and αmp and

also a steeper Phillips curve and less persistent Taylor rule.

Consumption response (mean, %)
Macro Macro+Micro

Baseline -0.0174 -0.042
Equal exposure -0.0165 -0.030

Table 7: First quarter consumption response to
monetary policy shock

Figure 9: Amplification of first-quarter consump-

tion to 25bps monetary policy shock

35Using a calibrated model, Alves and Violante (2023) find a similar amplification.
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6 Concluding remarks

Estimating dynamic heterogeneous-agent models using large individual-level micro datasets would

be infeasible for most existing methodologies. Thus, the current literature has resorted to using

a limited set of moments, potentially discarding valuable data. This paper presents a tractable

econometric framework that approximates the joint likelihood of macro and individual-level

micro data. Our theoretical result establishes sufficient conditions under which the structural

model can be well-approximated by a reduced-rank VAR(1), which opens the door to rapid

estimation of the structural parameters. In estimating a medium-scale HANK model, we find

substantial consumption amplification to monetary policy shocks, driven by the fact that high MPC

households are also highly sensitive to changes in aggregate income. Our estimation exercise also

sheds an important light on misspecification in workhorse HANK models since they are unable to

simultaneously match macro and micro second moments.

On the methodology, interesting extensions include extending our algorithm to re-weight

the micro and macro contributions to the likelihood. On the modelling side, extensions include

suggesting novel mechanisms that enable HANK models to better match macro and micro volatility

simultaneously. We leave these to future works.
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Appendix A Proofs

A.1 Proof of Proposition 1

Proof. Associated with state-space system (1) is its innovations representation.36

x̂t+1 = A x̂t +Kat (A.1)

yt = G x̂t + at

where x̂t = E[xt |yt−1], at = yt−E[yt |yt−1], at ⊥ as ∀t ̸= s for yt = {ys}s<t and the Hilbert
space H(at) = H(yt). Furthermore, Ω ≡ E[at a⊤t ] = GΣ∞G⊤+R, where Σ∞ and K satisfy

Σ∞ = E[xt−x̂t][xt−x̂t]
⊤

= CC⊤+KRK⊤+(A−KG)Σ∞(A−KG)⊤

K = AΣ∞G⊤(GΣ∞G⊤+R)−1.

Notice that rank(K) = N . Rearranging (A.1) gives an expression for xt+1 in terms of yt and xt

x̂t+1 = Ax̂t +K(yt−Gx̂t)

= (A−KG)x̂t +Kyt

Substituting into the measurement equation of (A.1) gives

yt = G[(A−KG)x̂t−1 +Kyt−1] + at

= GKyt−1+G(A−KG)x̂t−1 + at

Notice that B∞
1 := GK is a rank N matrix. Moreover, so it A−KG. Iterating backward gives us

the desired result

yt =

∞∑
j=1

B∞
j yt−j +at (A.2)

E[at y⊤
t−j ] = 0 for all j ≥ 1

E[at aTt ] = Ω = GΣ∞G⊤+R

B∞
j = G(A−KG)j−1K ∀j ≥ 1 (A.3)

where rank(B∞
j ) = N ∀j ≥ 1.

36A detailed derivation can be found in Lungqvist and Sargent (2018), Ch. 2
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A.2 Proof of Lemma 1

Proof. Consider a sequence of models {MM} indexed by the number of observables M ∈ N. For
each M , the model MM is given by

xt+1 = Axt+Cwt+1

yt = GM xt+vt,

where shocks wt+1 ∼ N (0, IN×N ), measurement errors vt ∼ N (0,RM ) and ws ⊥ vτ for all s, τ .
Note that the matrices A,C ∈ RN×N are fixed across M , meaning that the transition equation of
the unobserved state is invariant to the number of observables. In the following, ∥·∥ denotes the
Frobenius norm.

By Proposition 1, we have

KM = AΣ∞,M G⊤
M (GM Σ∞,M G⊤

M +RM )−1

where Σ∞,M ∈ GL(N,R) solves the matrix Ricatti equation

Σ∞,M = CC⊤+KM RM K⊤
M +(A−KM GM )Σ∞,M (A−KM GM )⊤ (A.4)

= AΣ∞,M A⊤+CC⊤−AΣ∞,M G⊤(GM Σ∞,M G⊤
M +RM )−1GM Σ∞,M A⊤ (A.5)

Such an invertible solution always exists and is unique under the maintained stability assumption.
Furthermore, by construction, Σ∞,M = E[xt−E[xt | yt−1]][xt−E[xt | yt−1]]⊤.

We will first show that Σ∞,M → CC⊤ = E[xt−E[xt | xt−1]][xt−E[xt | xt−1]]
⊤. By Assump-

tion 2, rank(GM ) = N , so we have the normal equation

xt = (G⊤
M GM )−1G⊤

M yt−(G⊤
M GM )−1G⊤

M vt

Combine with the state transition equation and we obtain

xt = A(G⊤
M GM )−1G⊤

M yt−1−A(G⊤
M GM )−1G⊤

M vt−1+Cwt

Put F [xt | yt−1] := A(G⊤
M GM )−1G⊤

M yt−1. The forecast variance of this linear predictor is

E[xt−F [xt | yt−1]][xt−F [xt | yt−1]]
⊤ = A(G⊤

M GM )−1G⊤
M RM GM (G⊤

M GM )−1A⊤+CC⊤

= σ2v A(G⊤
M GM )−1A⊤+CC⊤

where we have use the assumption that RM = σ2vIM . Now, by Assumption ??, as M → ∞,
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∥∥(G⊤
M GM )−1

∥∥→ 0. Therefore, we have∥∥∥E[xt−F [xt | yt−1]][xt−F [xt | yt−1]]
⊤ −CC⊤

∥∥∥ = σ2v

∥∥∥A(G⊤
M GM )−1A⊤

∥∥∥
≤ σ2v ∥A∥2

∥∥∥(G⊤
M GM )−1

∥∥∥→ 0

We conclude that E[xt−F [xt | yt−1]][xt−F [xt | yt−1]]
⊤ → CC⊤ pointwise as M → ∞. Finally,

since conditional expectation minimizes mean-square errors, we have

Σ∞,M = E[xt−E[xt | yt−1]][xt−E[xt | yt−1]]⊤

⪯ E[xt−F [xt | yt−1]][xt−F [xt | yt−1]]
⊤

where ⪯ represents the Loewner order.37 Clearly, we must have CC⊤ ⪯ Σ∞,M because E[xt |
xt−1,y

t−1] = E[xt | xt−1]. Then by the continuity and anti-symmetry of the Loewner order, we
conclude that Σ∞,M → CC⊤ pointwise as M → ∞.

We are ready to prove that ∥A−KM GM∥ → 0. By the matrix Ricatti equation (A.5), we have∥∥∥(AΣ∞,M )−1(Σ∞,M −CC⊤)(A⊤)−1
∥∥∥ =

∥∥∥IN −G⊤
M (GM Σ∞,M G⊤

M +RM )−1GM Σ∞,M

∥∥∥
Let M → ∞ and we have the limit∥∥∥IN −G⊤

M (GM Σ∞,M G⊤
M +RM )−1GM Σ∞,M

∥∥∥→ 0

Note that

∥A−KM GM∥ =
∥∥∥A−AΣ∞,M G⊤

M (GM Σ∞,M G⊤
M +RM )−1GM

∥∥∥
≤ ∥A∥

∥∥∥IN −Σ∞,M G⊤(GM Σ∞,M G⊤
M +RM )−1GM

∥∥∥
= ∥A∥

∥∥∥IN −G⊤
M (GM Σ∞,M G⊤

M +RM )−1GM Σ∞,M

∥∥∥
where the last equality follows from taking transpose and the symmetry of RM and Σ∞,M . Let
M → ∞ and we have ∥A−KM GM∥ → 0, as desired.

We can further compute the convergence rate. Note that

M ∥A−KM GM∥ ≤M ∥A∥
∥∥∥(AΣ∞,M )−1(Σ∞,M −CC⊤)(A⊤)−1

∥∥∥
≤ ∥A∥

∥∥(AΣ∞,M )−1
∥∥∥∥∥M(Σ∞,M −CC⊤)

∥∥∥∥∥∥(A⊤)−1
∥∥∥

≤ σ2v ∥A∥3
∥∥(AΣ∞,M )−1

∥∥∥∥∥(A⊤)−1
∥∥∥∥∥∥∥∥
(

1

M
G⊤
M GM

)−1
∥∥∥∥∥

By Assumption ?? and our result that Σ∞,M → CC⊤, the RHS converges to some positive number

37For any pair of positive semidefinite matrices A,B ∈ RN×N , A ⪯ B iff B −A is positive semidefinite.

50



as M → ∞. Thus, we conclude that lim supM→∞M ∥A−KM GM∥ <∞.

A.3 Proof of Corollary 1

Proof. Manipulating the innovations representation from the proof of Proposition 1 gives

x̂t+1 = Axt+K(yt−Gx̂t) (A.6)

= (A−KG)x̂t +Kyt (A.7)

Define x̃t := E[xt |yt]. So, x̂t+1 = Ax̃t.Next, suppose A−KG = 0. Then,

x̂t+1 = Kyt (A.8)

Ax̃t = ALyt (A.9)

for L = Σ∞GΩ−1 such that K = AL. AE[xt |yt] = ALyt. Assuming an invertible A, we have
that

E[xt |yt] = Lyt

i.e. that a forecast of xt using all past observables yt is equivalent to just using the current
observables vector yt.

A.4 Proof of Theorem 1

Proof. Consider the case j = 2. By the definition of Frobenius norm, we have

∥B∞
2 ∥ = ∥G(A−KG)K∥

=

√
tr{K⊤(A−KG)⊤G⊤G(A−KG)K}

=

√
tr{(A−KG)⊤(G⊤G)(A−KG)(KK⊤)}

=

√
tr
{
(A−KG)⊤

(
1

M
G⊤G

)
[M(A−KG)](KK⊤)

}
(A.10)

By the matrix Ricatti equation (A.4), we have

σ2v KK⊤ = Σ∞ −CC⊤−(A−KG)Σ∞(A−KG)⊤

By Lemma 1, as M → ∞, the RHS goes to 0. Thus, we have KK⊤ → 0 as M → ∞.
Take lim sup of equation (A.10) and use the continuity of tr and multiplication:

lim sup
M→∞

∥B∞
2 ∥ =

√
tr
{
0 ·
(

lim
M→∞

1

M
G⊤G

)
·
[
lim sup
M→∞

M(A−KG)

]
· 0
}
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By Assumption 2, limM→∞
1
M G⊤G exists and is finite. By Lemma 1, lim supM→∞M(A−KG)

is finite. We conclude that lim supM→∞ ∥B∞
2 ∥ = 0 and hence ∥B∞

2 ∥ → 0. Clearly, the case j > 2

can be proved in the same way, as (A−KG)j → 0. Inspecting equation (A.10), we can further
conclude that for all j ≥ 1

lim sup
M→∞

M j−1
∥∥B∞

j

∥∥ <∞

Given that
∥∥B∞

j

∥∥→ 0 for all j ≥ 2, the infinite-order VAR (2) collapses to the first-order VAR
(4), as claimed.

A.5 Proof of Theorem 2

Proof. Using the infinite-order VAR (2), we can write the DFM likelihood as

ℓDFM (Y;A,C,G,R) =
T∑
t=2

ℓ(yt | yt−1;A,C,G,R)

= −1

2

T∑
t=2

log|Ω|+

yt−
t−1∑
j=1

B∞
j yt−j

⊤

Ω−1

yt−
t−1∑
j=1

B∞
j yt−j




where Ω = GΣ∞G⊤+R is the variance-covariance matrix of the innovation. Similarly, using the
first-order VAR (4), we can write the likelihood as

ℓ1(Y;A,C,G,R) =
T∑
t=2

ℓ(yt | yt−1;A,C,G,R)

= −1

2

T∑
t=2

{
log|Ω|+

(
yt−B∞

1 yt−1

)⊤
Ω−1

(
yt−B∞

1 yt−1

)}
Subtract the two expressions and we obtain

|ℓDFM (Y;A,C,G,R)− ℓ1(Y;A,C,G,R)|

=
1

2

∣∣∣∣∣∣∣
T∑
t=2


 t−1∑
j=2

B∞
j yt−j

⊤

Ω−1

 t−1∑
j=2

B∞
j yt−j

+ 2

 t−1∑
j=2

B∞
j yt−j

⊤

Ω−1 (at)


∣∣∣∣∣∣∣

≤ 1

2

T∑
t=2

λmax(Ω
−1)

∥∥∥∥∥∥
t−1∑
j=2

B∞
j yt−j

∥∥∥∥∥∥
2

+ 2

 t−1∑
j=2

B∞
j yt−j

⊤

Ω−1 (at)


where λmax(Ω

−1) denotes the largest eigenvalue of Ω−1 and at = yt−
∑t−1

j=1B
∞
j yt−j .

It suffices to show that

1. E
∥∥∥∑t−1

j=2B
∞
j yt−j

∥∥∥2 → 0 for all t = 1, . . . , T
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2. lim supM→∞ λmax(Ω
−1) <∞

3. E(B∞
j yt−j)

⊤Ω−1 at = 0 for all j ≥ 2 and t = 1, . . . , T

Claim 1. Using the measurement equation for yt, we have

∥∥∥∥ 1√
M

yt

∥∥∥∥ ≤
∥∥∥∥ 1√

M
G

∥∥∥∥ ∥xt∥+ ∥∥∥∥ 1√
M

vt

∥∥∥∥ =

√
tr
{

1

M
G⊤G

}
· ∥xt∥+

√√√√ 1

M

M∑
i=1

v2i,t

Note that the distribution of ∥xt∥ is invariant to M and has finite mean. By Assumption 2, we have√
tr
{

1

M
G⊤G

}
· ∥xt∥

a.s.→ λ ∥xt∥

for some λ > 0. By SLLN, we have √√√√ 1

M

M∑
i=1

v2i,t
a.s.→ σv

It follows that lim supM→∞

∥∥∥ 1√
M

yt

∥∥∥ <∞ almost surely. For any j ≥ 2, by Theorem 1, we have

lim sup
M→∞

∥∥B∞
j yt−j

∥∥ ≤ lim sup
M→∞

(
√
M
∥∥B∞

j

∥∥) ∥∥∥∥ 1√
M

yt−j

∥∥∥∥
= lim sup

M→∞

√
M
∥∥B∞

j

∥∥)︸ ︷︷ ︸
=0

· lim sup
M→∞

∥∥∥∥ 1√
M

yt−j

∥∥∥∥︸ ︷︷ ︸
<∞ a.s.

Thus,
∥∥B∞

j yt−j
∥∥ a.s.→ 0 for all j ≥ 2 and t = 1, . . . , T . It follows that when M sufficiently large,∥∥∥∑t−1

j=2B
∞
j yt−j

∥∥∥2 is uniformly bounded above almost surely. Then by Dominated Convergence

Theorem, we have E
∥∥∥∑t−1

j=2B
∞
j yt−j

∥∥∥2 → 0 for all t = 1, . . . , T .

Claim 2. Fix M . By Spectral Theorem, there exists P,D ∈ RM×M such that P⊤P = IM , D is
diagonal, and GΣ∞G⊤ = P⊤DP. Then

Ω = GΣ∞G⊤+R = P⊤DP+ σ2vP
⊤P = P⊤(D+ σ2vIM )P

It follows that Ω−1 = P⊤(D + σ2vIM )−1P. Since all the entry of D is non-negative, the largest
eigenvalue of Ω−1 is smaller than 1/σ2v . Then clearly lim supM→∞ λmax(Ω

−1) <∞
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Claim 3. Fix j ≥ 2. As shown in Claim 2, we can write Ω−1 = P⊤(D+ σ2vIM )−1P. Then

(B∞
j yt−j)

⊤Ω−1 at = (PB∞
j yt−j)

⊤(D+ σ2vIM )−1(Pat)

=
M∑
i=1

1

di + σ2 − v
(PB∞

j yt−j)i · (Pat)i

where (·)i denote the i entry of the vector. Clearly, for any i, (PB∞
j yt−j)i ∈ H(yt−1) and (Pat)i ∈

H(at). Then by the orthogonality condition at ⊥ H(yt−1), we have

E[(PB∞
j yt−j)i · (Pat)i] = 0 ∀i

It follows that E(B∞
j yt−j)

⊤Ω−1 at = 0, as desired.

By the three claims, the proof is complete and we conclude that

lim
M→∞

E|ℓDFM (Y;A,C,G,R)− ℓ1(Y;A,C,G,R)| = 0

A.6 Proof of Proposition 2

Proof. WLOG, let css = 0. As shown in Auclert et al. (2021b), up to first-order, the household’s
policy can be written as

ct =
∞∑
j=0

∑
p∈P

∂ c

∂pj
Et[p̃t+j ]

where ∂ c
∂pj

∈ RM is the derivative of individual policy wrt. the j-period ahead aggregate input
p ∈ P and p̃t+j denotes the deviation of p from its steady-state value.

Put p̃t: := (p̃t, p̃t+1, . . . )
⊤. Using the impulse response functions, we can write

Et[p̃t:] = Et−1[p̃t:] + Ipe ϵt
= F Et−1[p̃t−1:] + Ipe ϵt

where F is the shift forward operator. Iterate backward and we obtain the MA representation

Et[p̃t:] =
∞∑
j=0

F jIpe ϵt−j

Let J c
p be the infinite-dimensional matrix of which the j column is ∂ c

∂pj
. Substitute back into the
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policy function:

ct =
∑
p∈P

J c
p Et[p̃t:] =

∑
p∈P

J c
p

∞∑
j=0

F jIpe ϵt−j =
∞∑
j=0

∑
p∈P

J c
pF

jIpe︸ ︷︷ ︸
Ψc

j

ϵt−j

A.7 Other derivations

Claim. For idiosyncratic income given by

yt(z) = Γt(z)wtNte
vrt (A.11)

Γt(z) =
z
(

wtNt
wssNss

)γy(z) (
ev

r
t
)−γr(z)

Ez
[
z
(

wtNt
wssNss

)γy(z) (
ev

r
t

)−γr(z)] (A.12)

subject to E[z] = E[zγy(z)] = E[zγr(z)] = 1. Then the elasticity of idiosyncratic income to aggregate
income is

∂ log yt(z)

∂ logwtNt
= γy(z)

Taking logarithms and taking the partial obtains

log yt = log Γt(z) + logwtNt + vrt (A.13)

∂ log yt(z)

∂ logwtNt
=
∂ log Γt(z)

∂ logwtNt
+ 1 (A.14)

Moroever

log Γt(z) = log z + γy(z)(logwtNt − logwssNss)− γr(z)v
r
t− (A.15)

logEz

[
z

(
wtNt

wssNss

)γy(z) (
ev

r
t
)γr(z)]

= γy(z)−
Ez
[
zγy(z)

(
wtNt
wssNss

)γy(z)−1 (
ev

r
t
)γr(z)]

Ez
[
z
(

wtNt
wssNss

)γy(z) (
ev

r
t

)γr(z)] (A.16)

and evaluating wtNt = wssNss and vrt = 0 and imposing the normalizations E[z] = E[zγy(z)] = 1

implies

∂ log yt(z)

∂ logwtNt
= γy(z)− 1 + 1 = γy(z) (A.17)
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Claim. Given the above setting, the elasticity of idiosyncratic income to monetary policy shock is

∂ log yt(z)

∂vrt
= γy(z)

∂ logwtNt

∂vrt
− γr(z) (A.18)

Equation (A.13) implies

∂ log yt(z)

∂vrt
=
∂ log Γt(z)

∂vrt
+
∂ logwtNt

∂vrt
− 1 (A.19)

Moreover, (A.15) implies

∂ log Γt(z)

∂vrt
=γy(z)

∂ logwtNt

∂vrt
− γr(z)− (A.20)

∂wtNt

∂vrt

Ez
[
zγy(z)

(
wtNt
wssNss

)γy(z)−1 (
ev

r
t
)−γr(z)]

Ez
[
z
(

wtNt
wssNss

)γy(z) (
ev

r
t

)−γr(z)] +

Ez
[
zγr(z)

(
wtNt
wssNss

)γy(z)−1 (
ev

r
t
)−γr(z)]

Ez
[
z
(

wtNt
wssNss

)γy(z) (
ev

r
t

)−γr(z)]
(A.21)

Evaluating wtNt = wssNss and vrt = 0 and imposing the normalizations E[z] = E[zγy(z)] =
E[zγr(z)] = 1 obtains

∂ log yt(z)

∂vrt
= γy(z)

∂ logwtNt

∂vrt
− γr(z)−

∂ logwtNt

∂vrt
+ 1 +

∂ logwtNt

∂vrt
− 1 (A.22)

= γy(z)
∂ logwtNt

∂vrt
− γr(z) (A.23)
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Appendix B Algorithms

B.1 Dynamic Mode Decomposition

Another option for computing the reduced-rank VAR(1) matrix Br is to employ the Dynamic Mode
Decomposition (DMD) algorithm. The DMD has become a workhorse tool in the fluid dynamics
literature, originally introduced by Schmidt and Sesterhenn (2010) and later developed by Tu
et al. (2014). Existing applications of the DMD also include epidemiology, neuroscience and video
processing (see Brunton and Kutz (2022)).

Given simulated data matrices Ỹ and Ỹ
′
, the DMD estimates the reduced-rank VAR associated

with the simulated data by solving

Br = argmin
rank(B)=r

∥∥∥Ỹ′
−BỸ

∥∥∥ (B.1)

where ∥·∥ denotes the Frobenius norm. To compute Br, represent Y with a reduced Singular Value
Decomposition (SVD)

Ỹ = ŨΣ̃Ṽ
⊤

where Ũ is N × N , Σ̃ is N × N and Ṽ is T × N . We compress Ỹ by using its r largest singular
values:

Ỹ ≈ UΣV⊤,

where U = Ũ[:, : r], Σ = Σ̃[: r, : r] has r singular values as its only non-zero entries, and
V⊤ = Ṽ

⊤
[: r, :]. Here U is N × T , V is T × r, Σ is r × r, and V⊤ is r × T .38

We use this reduced-order SVD approximation of Ỹ to compute

Br = Ỹ
′
Ỹ

+
, (B.2)

where by construction Br is rank r.39 The covariance matrix of the residuals, ãt = ỹt −Br ỹt−1, is
computed via

Ωr =
1

T−1

T∑
t=1

ãtã
⊤
t (B.3)

38Note that all we need here is a truncated SVD, which can be very efficiently computed using existing machine-learning packages
(e.g. scikit-learn).

39The DMD also provides estimates of the underlying factors xt as well as estimates of G and A. Though we do not use them here,
see ?, sec. 2.1 for full details of the DMD algorithm and connections with linear state-space models.
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B.2 Second-order reduced-rank VAR

Theorem 1 shows how under Assumption 2, the reduced-rank VAR(∞) collapses down to a VAR(1)
as N → ∞ at rate N . In reality however, datasets have a fixed and finite N . In this section, we
provide a solution for the case of a small N such that a VAR(1) is not a good approximation, but a
VAR(2) is. This section shows how one might compute a reduced-rank second-order VAR using
canonical correlation formulas from Anderson (1951) and the Frish-Waugh-Lovell Theorem.

yt = B1,r+1 yt−1+B2,r yt−2+at (B.4)

where rank(B1,r+1) = r + 1 and rank(B2,r) = r. Computing the reduced-rank VAR matrices
becomes slightly more involved. At first glance it may seem a possible route to create

yt = [B1,r+1B2,r]

[
yt−1

yt−2

]
(B.5)

and proceed as before. But neither approaches above enable the imposition of a partition of
reduced-rank matrices in the required way. One solution is to the invoke Frisch-Waugh-Lovell
Theorem. First, we will compute the regression coefficient

yt−1 = D1 yt−2+v1t (B.6)

D1 = E[yt−1 y
⊤
t−2]E[yt−2 y

⊤
t−2]

−1 (B.7)

E[v1tv
⊤
1t] = Σ0 −D1Σ0D

⊤
1 (B.8)

By Frisch-Waugh-Lovell, B1 is the regression coefficient in

yt = B1 v1t + ε1t (B.9)

To then estimate the reduced-rank B1r, we implement the canonical correlations formula in
equaton (B.9). Similarly for B2,r,

yt−2 = D2 yt−1+v2t (B.10)

D2 = E[yt−2 y
⊤
t−1]E[yt−1 y

⊤
t−1]

−1 (B.11)

E[v2tv
⊤
2t] = Σ0 −D2Σ1 −Σ⊤

1 D
⊤
2 +D2Σ0D

⊤
2 (B.12)

Then by Frisch-Waugh-Lovell, B2 is the regression coefficient is

yt = B2 v2t + ε2t (B.13)

Similarly to estimate the reduced-rank B2r, we implement the Anderson (1951) formula on
(B.13).
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Given B1r and B2r, we can compute the covariance matrix

Ω = E[at a⊤t ] = Σ0 −B1rΣ0B
⊤
1r −B2rΣ0B

⊤
2r −B1rΣ1B

⊤
2r −B2rΣ

⊤
1 B⊤

1r (B.14)
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Appendix C Comparison with other estimation methods

C.1 Conventional approach for likelihood computation

In this section, we compare the speed of our method against two alternatives. The first is the
conventional likelihood computation of the moving-average representation, employed by Auclert
et al. (2021a). By Proposition 2, the data has a MA representation

ct =
∞∑
j=0

Θjϵt−j + vt, ϵt ∼ N(0,Σe)

where vt ∼ N(0,R) is measurement error.
For data matrix Y = [y1, . . . ,yT ], the likelihood computation involves vectorizing the data

matrix into aNT×1 vectors and computing theNT×NT covariance matrix V. Then the likelihood
is proportional to

L(y1, . . . ,yT ; θ) =
1

2
det logV − 1

2
Θ⊤V−1Θ

where Θ = [Θ1, . . . ,ΘJ ]
⊤. The computational cost is solely to evaluate V−1, which Auclert et al.

(2021a) state requires time proportional to N3T 3 and thus scales poorly with N or T .

C.2 Whittle likelihood approximation

An approach that scales better with N and T is the Whittle approximation to the likellihood, as in
Hansen and Sargent (1981) and Plagborg-Møller (2019). The likelihood is approximated by

L(y1, . . . ,yT ; θ) = −1

2

T−1∑
j=0

[
log 2π + log(detS(ωj ; θ)) + tr(S(ωj ; θ)−1I(c;ωj))

]
(C.1)

where ωj := 2πj
T , S(ωj ; θ) is the spectral density of c at frequency ωj , and I(c;ωj) is the periodogram

of the data at frequency ωj . By definition, the periodogram is given by

I(c;ωj) :=
1

T

(
T∑
t=1

ct exp(−iωjt)

)(
T∑
t=1

ct exp(iωjt)

)′

(C.2)

By the MA representation, the spectral density is given by

S(ωj ; θ) =

 ∞∑
j=0

Ψc
j(θ) exp(−iωjj)

Σe

 ∞∑
j=0

Ψc
j(θ) exp(iωjj)

′

+R

Note that both I(c;ωj) and S(ωj ; θ) are M -dimensional matrices and can be computed by applying
the Discrete Fourier Transform to the data matrix c and MA coefficient array {Ψc

j : j = 0, . . . , T}.
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Figure C.1: Finite sample parameter distribution across 500 monte-carlo samples

Also, the symmetry of Fourier transform implies that we only need to evaluate the summands in
(C.1) for j = 0, . . . , ⌊T−1

2 ⌋

C.2.1 Comparison of finite-sample parameter distribution

In this section, we implement the monte-carlo exercise in Section 4.4 for the Whittle approximation
of the likelihood. Figure C.1 plots the distribution of the estimated parameters from 500 monte-carlo
samples each of length T = 120, comparing it our method. The Whittle approximation delivers
a distribution close to ours, for ρz and ρξ. The distribution of σξ is slightly to the right and has a
mean further away from the true value; and the distribution for σϵ is much more dispersed and has
a bias compared to our method.

One reason for these differences is that the periodogram and associated approximation quality
depends on large T , as seen in equation (C.2). This is unlike our method, where the approximation
quality depends on large N .

C.3 Comparison of computing times

Figure C.1 compares the computing times for 100 likelihood evaluations for our method (”Low-
rank approximation”), Whittle approximation (Section C.2, and the MA likelihood computation
(Section C.1).

For small M , all three methods have comparable computing times, around 11 seconds.
Computing times for our method increases slowly as M increases, rising to 12.6 seconds for

M = 100. Computing times are similar for the Whittle approximation, which rises to 13.2 seconds
for M = 100, around 1.08 times larger.
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Number of observables, N
2 5 10 20 50 100

Low-rank approximation 11.2 11.3 11.4 11.5 11.7 12.6
Whittle approximation 11.2 11.3 11.4 11.6 11.6 13.2
Exact 11.3 11.3 12.2 15.7 53.7 240.8

Table C.1: Summary of computing times for 100 likelihood evaluations

On the other hand, computing times for the exact method increases exponentially: the computa-
tion takes 6 minutes for 100 evaluations of the likelihood. This implies that a full-blown monte-carlo
simulations with 100,000 draws will take around 100 hours, or 4 days. In comparison, our method
takes around 3.5 hours and Whittle approximation takes around 3.6 hours.
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Appendix D Calibration of Aiyagari model in Section 4

Table D.2 presents the calibrated parameters used in the Monte-Carlo exercise in Section 4.

Parameter Interpretation Value
σ Inverse EIS 1.00
δ Depreciation 0.025
α Labor share 0.11
ρe Persistence of idiosyncratic productivity 0.967
σe Std of idiosyncratic productivity 0.50
ρz Persistence of TFP 0.95
ρξ Persistence of tax shock 0.80
σz Std of TFP shock 0.50
σξ Std of tax shock 0.30

Table D.2: Calibrated parameters
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Appendix E Verifying rank condition

E.1 Low-rank assumption in other benchmark models

Figure E.2: Contribution to total variance of 10 leading principle components

E.2 Section 4: Aiyagari model with aggregate shocks

Number of factors, N
1 2 3 4 5 6 7 8

Check 1. IC(N) 304.88 304.03 303.13 303.11 303.10 303.10 303.10 303.10
Check 2. Singular Values 334.8 17.7 12.6 11.1 10.9 10.6 10.6 10.5
Check 3. max |Ê[at+1 at]| 0.79 0.27 0.27 0.27 0.27 0.27 0.27 0.27
Check 4. R2

r 0.86 0.892 0.895 0.895 0.895 0.895 0.895 0.895

Table E.3: Rank estimation of model

E.3 Section 5: Heterogeneous-agent New Keynesian model

Number of factors, N
1 2 3 4 5 6 7 8 9 10

Check 1. IC(N) -9.14 -9.13 -9.26 -9.36 -9.43 -9.37 -9.35 -9.30 -9.24 -9.17
Check 2. Singular Values 9.77 3.28 1.73 0.43 0.36 0.21 0.19 0.12 0.10 0.10
Check 3. max |Ê[at+1 at]| 0.097 0.072 0.037 0.016 0.010 0.010 0.003 0.006 0.006 0.006
Check 4. R2

r 0.33 0.35 0.47 0.55 0.62 0.62 0.63 0.63 0.63 0.63

Table E.4: Rank estimation of model
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Appendix F Extensions

F.1 Unobserved idiosyncratic states
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Appendix G Additional charts and tables
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Figure G.3: Heatmap of missing data for micro data
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